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Series Preface

Mechanical engineering, and engineering discipline born of the needs of the indus-
trial revolution, is once again asked to do its substantial share in the call for indus-
trial renewal. The general call is urgent as we face profound issues of productivity
and competitiveness that require engineering solutions, among others. The Me-
chanical Engineering Series is a series featuring graduate texts and research mono-
graphs intended to address the need for information in contemporary areas of me-
chanical engineering.

The series is conceived as a comprehensive one that covers a broad range of
concentrations important to mechanical engineering graduate education and re-
search. We are fortunate to have a distinguished roster of consulting editors, each
an expert in one of the areas of concentration. The names of the consulting editors
are listed on page vi of this volume. The areas of concentration are applied me-
chanics, biomechanics, computational mechanics, dynamic systems and control,
energetics, mechanics of materials, processing, thermal science, and tribology.



Contents

Preface to the Third Edition
Preface to the First Edition

1 An Overview of Robotic Mechanical Systems

1.1 Introduction. . ... . ... ... .. .. . ... . ...
1.2 The General Architecture of Robotic Mechanical Systems . . . .
1.2.1 Types of Robots by Function . . . ... .. ... .. ...
122 Typesof Robotsby Size . . . . . . ... ... .. .....
1.2.3 Types of Robots by Application . ... ..........
1.3 Manipulators . . . . . .. L e
1.3.1 RoboticArms. . ... ... ... .. ... . L.
1.32 RoboticHands ... .....................
1.4 Motion Generators . . . . . . v v v it et e e e e e e e
14,1 ParallelRobots . . . . ... ... ... ... .. ...,
142 SCARA Systems . . . .. .. . ... ...
1.5 LOCOmMOtOTS . . . v v v v v e e e e e e e e e e e e e e e e
1.5.1 TeggedRobots ... ... ...... ... .. .......
1.5.2 WheeledRobots . .. ... .................
1.6 Swimming Robots . . .. .. ... ... ... ... . ...,
17 FlyingRobots. . . .. .. .. .. . . .
1.8 EXErciSes . . .« v v i i e e e e e e e e e e e e e

2 Mathematical Background

2.1 Preamble . ... ... ... . . ..
2.2 Linear Transformations . .. .. ... ... ... ... ......
2.3 Rigid-Body Rotations . . ... ... ... ... .. ... .....
2.3.1 The Cross-Product Matrix . ... .............
2.3.2 TheRotation Matrix . . .. ... ... ... ........
2.3.3 The Linear Invariants of a 3 x 3 Matrix . ... ......
2.3.4 The Linear Invariants of a Rotation . . ... .......
235 Examples . . . . . ... i e e e e
2.3.6 The Euler-Rodrigues Parameters . . . . ... ... .. ..

2.4 Composition of Reflections and Rotations . . ... ........

XV

Xix



Contents

2.5 Coordinate Transformations and Homogeneous Coordinates . . . 56
2.5.1 Coordinate Transformations Between Frames
with a Common Origin . . . . ... ... ......... 56
2.5.2 Coordinate Transformation with Origin Shift . . ... .. 60
2.5.3 Homogeneous Coordinates . . . .. ... ... ....... 62
2.6 Similarity Transformations. . . . .. .. .. .. ... ... ..., 65
2.7 Invariance Concepts . . . . . . . . . o i it i it 71
2.7.1 Applications to Redundant Sensing . . . . .. .. ... .. 75
2.8 Exercises . . . . . ... e e e e e 79
Fundamentals of Rigid-Body Mechanics 89
3.1 Imtroduction. ... ... ... ... ... ... . ... . ... 89
3.2 General Rigid-Body Motion and Its Associated Screw . ... .. 89
3.2.1 The Screw of a Rigid-Body Motion . . . .. ... ... .. 93
3.2.2 The Pliicker Coordinatesof a Line . . . ... ... .. .. 95
3.23 ThePoseofaRigidBody . ................. 98
3.3 Rotation of a Rigid Body About a Fixed Point . . ... ... .. 102
3.4 General Instantaneous Motion of a Rigid Body . . ... ... .. 103
3.4.1 The Instant Screw of a Rigid-Body Motion . .. ... .. 104
342 The Twistofa RigidBody ... .............. 107
3.5 Acceleration Analysis of Rigid-Body Motions . . . ... ... .. 110
3.6 Rigid-Body Motion Referred to Moving Coordinate Axes. . . . . 112
3.7 Static Analysis of Rigid Bodies . . ... .............. 114
3.8 Dynamicsof Rigid Bodies . . . ... ... ... .......... 118
3.9 Exercises . .. .. ... e e e 122
Geometry of Decoupled Serial Robots 129
41 Introduction. .. ... ... . . ... ... .. ... 129
4.2 The Denavit-Hartenberg Notation . . ............... 129
4.3 The Geometric Model of Six-Revolute Manipulators . ... ... 138
4.4 The Inverse Displacement Analysis of Decoupled Manipulators . 141
4.4.1 The Positioning Problem . ... .............. 142
4.4.2 The Orientation Problem . ... .............. 157
4.5 EXErcises . . . v v i i i i e e e e e e e e e e e 162
Kinetostatics of Serial Robots 167
5.1 Imtroduction. . .. ... ... ... . ..., 167
5.2 Velocity Analysis of Serial Manipulators . . . ... ........ 168
5.3 Jacobian Evaluation . ... ..................... 175
5.3.1 Evaluation of Submatrix A . ... ............. 175
5.3.2 Evaluation of SubmatrixB . .. .............. 178
5.4 Singularity Analysis of Decoupled Manipulators . . . .. ... .. 180
5.4.1 Manipulator Workspace . . . .. .. ... . ... ... .. 182
5.5 Acceleration Analysis of Serial Manipulators. . . . ... ... .. 186
5.6 Static Analysis of Serial Manipulators . . . ... ......... 190

5.7 Planar Manipulators . . . . .. ... ... .. ... 0. 192



Contents

5.7.1 Displacement Analysis . . . .. .. ... ..........

5.7.2 Velocity Analysis . . . . ... ... ... ..........

5.7.3 Acceleration Analysis . .. .. ...............

5.74 StaticAnalysis . . ... ... ... o o

5.8 Kinetostatic Performance Indices . . . .. ... ... ... ....

5.8.1 Positioning Manipulators . . ... .............

5.8.2 Orienting Manipulators . . ... ... ... ........

5.8.3 Positioning and Orienting Manipulators . . . .. ... ..
5.8.4 Computation of the Characteristic Length: Applications

to Performance Evaluation . . .. .............

5.9 Exercises . . .. ... e e

Trajectory Planning: Pick-and-Place Operations

6.1 Introduction. .. ... .. .. .. ... ... ...

6.2 BackgroundonPPO . . ... ... ... ... ... . .. ...,

6.3 Polynomial Interpolation. . . ... ... ... ...........
6.3.1 A 3-4-5 Interpolating Polynomial . . . . .. .. ... ...
6.3.2 A 4-5-6-7 Interpolating Polynomial . . . .. ... .. ...

6.4 Cycloidal Motion . . . .. ... .. .. .0

6.5 Trajectories with ViaPoses . . ... ... ... ... ... ....
6.6 Synthesis of PPO Using Cubic Splines . . ... ... .......
6.7 EXercises . . . . ¢ . i i i it e e e e e e e e

Dynamics of Serial Robotic Manipulators
7.1 Introduction. . ... ... .. ... .. .. ... .. ...,
7.2 Inverse vs. Forward Dynamics . . . . .. .. ... ... ......
7.3 Fundamentals of Multibody System Dynamics. . . . . ... ...
7.3.1 On Nomenclature and Basic Definitions . . ... ... ..
7.3.2 The Euler-Lagrange Equations of Serial
Manipulators . . . . . ... .. e
7.3.3 Kane'sEquations. .................... ..
7.4 Recursive Inverse Dynamics . . . ... .. ... ..........
7.4.1 Kinematics Computations: Qutward Recursions. . . . . .
7.4.2 Dynamics Computations: Inward Recursions . ... ...
7.5 The Natural Orthogonal Complement in Robot Dynamics . . . .
7.5.1 Derivation of Constraint Equations and
Twist-Shape Relations . . . . . ... ... .........
7.5.2 Noninertial Base Link .. ... ...............
7.6 Manipulator Forward Dynamics . . . ... .. ... ... .....
7.6.1 Planar Manipulators . . . ... ... ............
7.6.2 Algorithm Complexity . . . .. .. ... ... .......
7.6.3 Simulation .............. . . . ... .. ...
7.7 Incorporation of Gravity Into the Dynamics Equations . . . . . .
7.8 The Modeling of Dissipative Forces . . . . .. ... ... ... ..
7.9 Exercises . .. ... ... e e e

Xxi



Xii Contents

8 Special Topics in Rigid-Body Kinematics
8.1 Introduction. . . . . . . . . . . . i it it
8.2 Computation of Angular Velocity from Point-Velocity Data . . .
8.2.1 A Robust Formulation . . . ... ..............
8.3 Computation of Angular Acceleration from Point-Acceleration
Data . . . . . o e e e
8.3.1 A Robust Formulation . . . . . ... ... ... ......
84 Exercises . . . . . .. e e

9 Geometry of General Serial Robots

9.1 Imtroduction. ... .... .. ... ...,

9.2 The IDP of General Six-Revolute Manipulators . . . . ... ...
9.2.1 Preliminaries . . ... ... ... ... . .
9.2.2 Derivation of the Fundamental Closure Equations

9.3 The Univariate-Polynomial Approach . . . . ... ... ......
9.3.1 The Raghavan-Roth Procedure . . . . ... ... .. ...
9.3.2 The Li-Woernle-Hiller Procedure . . . . . . ... ... ..

9.4 The Bivariate-Equation Approach . . ... .. ..........
9.4.1 Numerical Conditioning of the Solutions . . . . . . .. ..

9.5 Implementation of the Solution Method . . . . . ... ... ...

9.6 Computation of the Remaining Joint Angles . . . . . . ... ...
9.6.1 The Raghavan-Roth Procedure . . ... ... .......
9.6.2 The Li-Woernle-Hiller Procedure . . . . ... .. ... ..
9.6.3 The Bivariate-Equation Approach . . ... ... .. ...

9.7 Examples . .. . . .. . e e e

9.8 Exercises . . . . . . . i e e e e e e e e e e

10 Kinematics of Alternative Robotic Mechanical Systems

10.1 Introduction . . . . . . . . . L e
10.2 Kinematics of Parallel Manipulators . . .. ... .. .......

10.2.1 Velocity and Acceleration Analyses of Parallel
Manipulators . . . . . . ... . oo
10.3 Multifingered Hands . . . . . ... ... ... .. .. .......
10.4 Walking Machines . . . ... ... ... .. .. .. ... ...,
10.5 Rolling Robots . . . . . .. .. ... ... ..
10.5.1 Robots with Conventional Wheels . . ... ... ... ..
10.5.2 Robots with Omnidirectional Wheels . . . . . . ... ...
10.6 Exercises . . . . v i it e e e e e e e e e e

11 Trajectory Planning: Continuous-Path Operations
11.1 Introduction . . . . . . . . . . e e
11.2 Curve Geometry . . . v v v v v i e e e e e e e
11.3 Parametric Path Representation . .. ... ............
11.4 Parametric Splines in Trajectory Planning . . . . . ... ... ..
11.5 Continuous-Path Tracking . . . . . ... ... ... ... .....
11.6 Exercises . . . o o v v v i e e e e e e e e e e

323
323
324
330



Contents Xiii

12 Dynamics of Complex Robotic Mechanical Systems 469
12.1 Introduction . . . . . . . . . o . o i e e e e e e e 469
12.2 Classification of Robotic Mechanical Systems with Regard to Dy-

NAMICS « . v v v v v vt et s e e e e e e e e e 470
12.3 The Structure of the Dynamics Models of Holonomic Systems . . 471
12.4 Dynamics of Parallel Manipulators . . . . .. ... ... ..... 474
12.5 Dynamics of Rolling Robots . . . . . ... .. ... ... . .... 484
12.5.1 Robots with Conventional Wheels . . ... .. ... ... 485
12.5.2 Robots with Omnidirectional Wheels . . . . . .. ... .. 493
12.6 Exercises . . . . . . ..o e e e e e 502

A Kinematics of Rotations: A Summary 507

B Numerical Equation-Solving 513
B.1 The Overdetermined Linear Case . . . .. ... .. .. ... ... 514

B.1.1 The Numerical Solution of an Overdetermined

System of Linear Equations . . . . .. ... ........ 515
B.2 The Underdetermined Linear Case . ... ... .......... 519

B.2.1 The Numerical Solution of an Underdetermined
System of Linear Equations . . . . .. ... ........ 520
B.3 Nonlinear-Equation Solving: The Determined Case . . . . . . .. 521
B.3.1 The Newton-Raphson Method . . ... .......... 522
B.4 Overdetermined Nonlinear Systems of Equations . . . . ... .. 524
B.4.1 The Newton-Gauss Method . . . ... ... ........ 525
B.4.2 Convergence Criterion . . . . .. ... ... ... ..... 525
References 529

Index 543



Preface to the Third
Edition

The broad area of robotic mechanical systems continues developing at an impres-
sive pace. The Third Edition of Fundamentals of Robotic Mechanical Systems
does not claim to give a comprehensive account of developments up-to-date.
The book still aims at establishing the fundamentals of a multidiscipline that
is nowadays more active than it was in 2002, the year of publication of the
Second Edition. In doing this, however, I have tried to give an account of cur-
rent trends and to include references to a representative sample of developments
up to 2005. An invaluable source on the state of the art is the International
Conference on Robotics and Automation (ICRA), one of the best attended and
most respectable conferences on the subject. I have thus given, in Chapter 1,
an account of the pertinent topics and trends reported in the Proceedings of
ICRA 2005.

Among the most remarkable trends, I can cite: the intensive research recorded
in medical applications of robotics, which include surgery and rehabilitation;
micro-robots, which are intimately related to medical applications; and hu-
manoids. On the downside, space applications showed a stagnation in the last
five years, probably due to the emerging security applications.

In producing the Third Edition, I undertook an in-depth revision of Chap-
ters 4 and 8 of the Second Edition, which appeared to be disproportionately
long. In this vein, I split each of these chapters into two, which led to 12 chap-
ters in the current edition. Moreover, I took the opportunity to thoroughly
revise the first part of old Chapter 8, which is now included in Chapter 9. In
fact, I looked, in the Second Edition, for inaccuracies or ambiguities that needed
rectification. This work led to an in-depth revision of text and developments in
various chapters, besides new exercises.

A feature of the Third Edition is an accompanying CD that includes various
items: code intended to help the reader better understand the most cumber-
some derivations, and to provide useful tools when working out the exercises or
simply to assist the curious reader in exploring alternative examples or alterna-
tive methods; animations; and film. An important feature of the code provided
is that it allows for either symbolic manipulations, using Maple, or numerical
computations, using Matlab. The rough estimates of the solutions to systems of
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bivariate equations, arising in various chapters, but most intensively in Chap-
ter 9, is facilitated by the inclusion of a Matlab graphic user interface. Further
refinements of these estimates are implemented by means of a Newton-Gauss
least-square approximation to an overdetermined system of nonlinear equations,
as implemented in Matlab.

The excellent work done by Dr. Kourosh Etemadi Zanganeh, Canmet (Ne-
pean, Ontario, Canada), was instrumental in completing the Second Edition.
This work comprises the development of algorithms and code for the solution of
the inverse displacement problem of serial robots with architectures that prevent
a decoupling of the positioning from the orientation problems. The material in
Chapter 9 is largely based on that work.

I would like to thank all those who provided valuable advice in the Sec-
ond Edition: Profs. Carlos Lépez-Cajin, Universidad Auténoma de Querétaro
(Mexico), and J. Jests Cervantes-Sénchez, Universidad de Guanajuato (Mex-
ico), pointed out many inconsistencies in the first edition; Dr. Zheng Liu, Cana-
dian Space Agency, St.-Hubert (Quebec, Canada), who is teaching a course
based on the first six chapters of the book at McGill University, pointed out
mistakes and gave valuable suggestions for improving the readability of the
book. In the Third Edition, further suggestions received from Dr. Liu were
incorporated. Additionally, the valuable suggestions received from Prof. Pierre
Larochelle, Florida Institute of Technology, were also incorporated. Needless to
say, the feedback received from students throughout some 20 years of using this
material in the classroom, is highly acknowledged.

Not the least, I am planning to port the C-code RVS, developed on Silicon
Graphics’ IRIX—a dialect of UNIX-—in the nineties, into Windows. The code
should be available on the book website in the fall 2006. RVS, introduced already
in the First Edition, is the software system I have used at McGill University’s
Centre for Intelligent Machines to visualize robot motions in projects on design,
control and motion-planning,.

Chapter 1 has undergone a thorough facelift, besides an in-depth revision
to reflect the state of the art. In this light, I included new photographs on: a
modern industrial robot of the serial type; parallel robots; affordable Mekanum
wheels; legged robots; and an underwater robot. For the magnificent new pho-
tos, absent in the first two editions, I am indebted to: ABB Robotics; Prof.
C.M. Gosselin, Université Laval; Kornylak Corporation; and Prof. G. Dudek,
McGill University. For the magnificent animation of space robots, included in
the accompanying CD, I am indebted to the Canadian Space Agency and MDA,
the Brampton, Ontario-based manufacturer of Canadarm and Canadarm2.

Since there is always room for improvement, I welcome suggestions from the
readership, to the address below. Updates on the book will be posted at

www.cim.megill.ca/ “rmsl

The Solutions Manual has been expanded to include more solutions of sam-
pled problems. By the same token, the number of exercises has been expanded
as well. Moreover, the exercises have now been placed more appropriatedly, at
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the end of each chapter. The manual is typeset in WTEX with Autocad drawings;
it is available from the publisher upon request.

In closing, I would like to thank Dr. Svetlana Ostrovskaya, who assisted me
not only with the editing of the whole book, but also with the excellent tech-
nical work behind the many changes in Chapters 4 and 9. Waseem A. Khan,
a Ph.D. candidate at McGill University, is to be thanked for the excellent ad-
ditional drawings required by the third edition, besides some coding, while Dr.
Stephane Caro, a postdoctoral fellow, provided expertise in Matlab coding.

Montreal, June 2006 Jorge Angeles
angeles@cim.mcgill.ca



Preface to the First Edition

No todos los pensamientos son algoritmicos.

—M ario Bunge*

The beginnings of modern robotics can be traced back to the late sixties with
the advent of the microprocessor, which made possible the computer control
of a multiaxial manipulator. Since those days, robotics has evolved from a
technology developed around this class of manipulators for the replaying of a
preprogrammed task to a multidiscipline encompassing many branches of science
and engineering. Research areas such as computer vision, artificial intelligence,
and speech recognition play key roles in the development and implementation
of robotics; these are, in turn, multidisciplines supported by computer science,
electronics, and control, at their very foundations. Thus we see that robotics
covers a rather broad spectrum of knowledge, the scope of this book being only
a narrow band of this spectrum, as outlined below.

Contemporary robotics aims at the design, control, and implementation of
systems capable of performing a task defined at a high level, in a language re-
sembling those used by humans to communicate among themselves. Moreover,
robotic systems can take on forms of all kinds, ranging from the most intangible,
such as interpreting images collected by a space sound, to the most concrete,
such as cutting tissue in a surgical operation. We can, therefore, notice that
motion is not essential to a robotic system, for this system is meant to replace
humans in many of their activities, moving being but one of them. However,
since robots evolved from early programmable manipulators, one tends to iden-
tify robots with motion and manipulation. Certainly, robots may rely on a
mechanical system to perform their intended tasks. When this is the case, we
can speak of robotic mechanical systems, which are the subject of this book.
These tasks, in turn, can be of a most varied nature, mainly involving motions
such as manipulation, but they can also involve locomotion. Moreover, manipu-
lation can be as simple as displacing objects from a belt conveyor to a magazine.

! Not all thinking processes are algorithmic—translation of the author—personal commu-
nication during the Symposium on the Brain-Mind Problem. A Tribute to Professor Mario
Bunge on His 75th Birthday, Montreal, September 30, 1994.
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On the other hand, manipulation can also be as complex as displacing these ob-
jects while observing constraints on both motion and force, e.g., when cutting
live tissue of vital organs. We can, thus, distinguish between plain manipulation
and dextrous manipulation. Furthermore, manipulation can involve locomotion
as well.

The task of a robotic mechanical system is, hence, intimately related to mo-
tion control, which warrants a detailed study of mechanical systems as elements
of a robotic system. The aim of this book can, therefore, be stated as establish-
ing the foundations on which the design, control, and implementation of robotic
mechanical systems are based.

The book evolved from sets of lecture notes developed at McGill University
over the last twelve years, while I was teaching a two-semester sequence of
courses on robotic mechanical systems. For this reason, the book comprises two
parts—an introductory and an intermediate part on robotic mechanical systems.
Advanced topics, such as redundant manipulators, manipulators with flexible
links and joints, and force control, are omitted. The feedback control of robotic
mechanical systems is also omitted, although the book refers the reader, when
appropriate, to the specialized literature. An aim of the book is to serve as a
textbook in a one-year robotics course; another aim is to serve as a reference to
the practicing engineer.

The book assumes some familiarity with the mathematics taught in any
engineering or science curriculum in the first two years of college. Familiarity
with elementary mechanics is helpful, but not essential, for the elements of this
science needed to understand the mechanics of robotic systems are covered in
the first three chapters, thereby making the book self-contained. These three
chapters, moreover, are meant to introduce the reader to the notation and the
basics of mathematics and rigid-body mechanics needed in the study of the
systems at hand. The material covered in the same chapters can thus serve
as reading material for a course on the mathematics of robotics, intended for
sophomore students of science and engineering, prior to a more formal course
on robotics.

The first chapter is intended to give the reader an overview of the subject
matter and to highlight the major issues in the realm of robotic mechanical
systems. Chapter 2 is devoted to notation, nomenclature, and the basics of
linear transformations to understand best the essence of rigid-body kinematics,
an area that is covered in great detail throughout the book. A unique feature
of this chapter is the discussion of the hand-eye calibration problem: Many a
paper has been written in an attempt to solve this fundamental problem, al-
ways leading to a cumbersome solution that invokes nonlinear-equation solving,
a task that invariably calls for an iterative procedure; moreover, within each
iteration, a singular-value decomposition, itself iterative as well, is required. In
Chapter 2, a novel approach is introduced, which resorts to invariant proper-
ties of rotations and leads to a direct solution, involving straightforward matrix
and vector multiplications. Chapter 3 reviews, in turn, the basic theorems of
rigid-body kinetostatics and dynamics. The viewpoint here represents a major
departure from most existing books on robotic manipulators: proper orthogonal
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matrices can be regarded as coordinate transformations indeed, but they can
also be regarded as representations, once a coordinate frame has been selected,
of rigid-body rotations. I adopt the latter viewpoint, and hence, fundamental
concepts are explained in terms of their invariant properties, i.e., properties that
are independent of the coordinate frame adopted. Hence, matrices are used first
and foremost to represent the physical motions undergone by rigid bodies and
systems thereof; they are to be interpreted as such when studying the basics
of rigid-body mechanics in this chapter. Chapter 4 is the first chapter entirely
devoted to robotic mechanical systems, properly speaking. This chapter covers
extensively the kinematics of robotic manipulators of the serial type. However,
as far as displacement analysis is concerned, the chapter limits itself to the
simplest robotic manipulators, namely, those with a decoupled architecture, i.e.,
those that can be decomposed into a regional architecture for the positioning of
one point of their end-effector (EE), and a local architecture for the orientation of
their EE. In this chapter, the notation of Denavit and Hartenberg is introduced
and applied consistently throughout the book. Jacobian matrices, workspaces,
singularities, and kinetostatic performance indices are concepts studied in this
chapter. A novel algorithm is included for the determination of the workspace
boundary of positioning manipulators. Furthermore, Chapter 5 is devoted to
the topic of trajectory planning, while limiting its scope to problems suitable
to a first course on robotics; this chapter thus focuses on pick-and-place oper-
ations. Chapter 6, moreover, introduces the dynamics of robotic manipulators
of the serial type, while discussing extensively the recursive Newton-Euler algo-
rithm and laying the foundations of multibody dynamics, with an introduction
to the Euler-Lagrange formulation. The latter is used to derive the general al-
gebraic structure of the mathematical models of the systems under study, thus
completing the introductory part of the book.

The intermediate part comprises four chapters. Chapter 7 is devoted to
the increasingly important problem of determining the angular velocity and
the angular acceleration of a rigid body, when the velocity and acceleration of
a set of its points are known. Moreover, given the intermediate level of the
chapter, only the theoretical aspects of the problem are studied, and hence,
perfect measurements of point position, velocity, and acceleration are assumed,
thereby laying the foundations for the study of the same problems in the presence
of noisy measurements. This problem is finding applications in the control of
parallel manipulators, which is the reason why it is included here. If time
constraints so dictate, this chapter can be omitted, for it is not needed in the
balance of the book.

The formulation of the inverse kinematics of the most general robotic manip-
ulator of the serial type, leading to a univariate polynomial of the 16th degree,
not discussed in previous books on robotics, is included in Chapter 8. Like-
wise, the direct kinematics of the platform manipulator popularly known as the
Stewart platform, a.k.a. the Stewart-Gough platform, leading to a 16th-degree
monovariate polynomial, is also given due attention in this chapter. Moreover,
an alternative approach to the monovariate-polynomial solution of the two fore-
going problems, that is aimed at solving them semigrophically, is introduced in
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this chapter. With this approach, the underlying multivariate algebraic system
of equations is reduced to a system of two nonlinear bivariate equations that
are trigonometric rather than polynomial. Each of these two equations, then,
leads to a contour in the plane of the two variables, the desired solutions being
found as the coordinates of the intersections of the two contours.

Discussed in Chapter 9 is the problem of trajectory planning as pertaining to
continuous paths, which calls for some concepts of differential geometry, namely,
the Frenet-Serret equations relating the tangent, normal, and binormal vectors
of a smooth curve to their rates of change with respect to the arc length. The
chapter relies on cubic parametric splines for the synthesis of the generated
trajectories in joint space, starting from their descriptions in Cartesian space.
Finally, Chapter 10 completes the discussion initiated in Chapter 6, with an
outline of the dynamics of parallel manipulators and rolling robots. Here, a
multibody dynamics approach is introduced, as in the foregoing chapter, that
eases the formulation of the underlying mathematical models.

Two appendices are included: Appendix A summarizes a series of facts from
the kinematics of rotations, that are available elsewhere, with the purpose of
rendering the book self-contained; Appendix B is devoted to the numerical
solution of over- and underdetermined linear algebraic systems, its purpose being
to guide the reader to the existing robust techniques for the computation of
least-square and minimum-norm solutions. The book concludes with a set of
problems, along with a list of references, for all ten chapters.

On Notation

The important issue of notation is given due attention. In figuring out the
notation, I have adopted what I call the C® norm. Under this norm, the notation
should be

1. Comprehensive,
2. Concise, and

3. Consistent.

Within this norm, I have used boldface fonts to indicate vectors and matrices,
with uppercases reserved for matrices and lowercases for vectors. In compliance
with the invariant approach adopted at the outset, I do not regard vectors solely
as arrays, but as geometric or mechanical objects. Regarding such objects as
arrays is necessary only when it is required to perform operations with them
for a specific purpose. An essential feature of vectors in a discussion is their
dimension, which is indicated with a single number, as opposed to the convention
whereby vectors are regarded as matrix arrays of numbers; in this convention,
the dimension has to be indicated with two numbers, one for the number of
columns, and one for the number of rows; in the case of vectors, the latter
is always one, and hence, need not be mentioned. Additionally, calligraphic
literals are reserved for sets of points or of other objects. Since variables are
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defined every time that they are introduced, and the same variable is used in
the book to denote different concepts in different contexts, a list of symbols is
not included.

How to Use the Book

The book can be used as a reference or as a text for the teaching of the mechanics
of robots to an audience that ranges from junior undergraduates to doctoral
students. In an introductory course, the instructor may have to make choices
regarding what material to skip, given that the duration of a regular semester
does not allow to cover all that is included in the first six chapters. Topics
that can be skipped, if time so dictates, are the discussions, in Chapter 4, of
workspaces and performance indices, and the section on simulation in Chapter 6.
Under strict time constraints, the whole Chapter 5 can be skipped, but then,
the instructor will have to refrain from assigning problems or projects that
include calculating the inverse dynamics of a robot performing pick-and-place
operations. None of these has been included in Section 6 of the Exercises.

If sections of Chapters 4 and 5 have been omitted in a first course, it is highly
advisable to include them in a second course, prior to discussing the chapters
included in the intermediate part of the book.
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Chapter 1

An Overview of Robotic
Mechanical Systems

1.1 Introduction

In defining the scope of our subject, we have to establish the genealogy of robotic
mechanical systems. These are, obviously, a subclass of the much broader class
of mechanical systems. Mechanical systems, in turn, constitute a subset of the
more general concept of dynamic systems. In the end, we must have an idea of
what, in general, a system is.

The Concise Oxford Dictionary defines system as a “complex whole, set of
connected things or parts, organized body of material or immaterial things,”
whereas the Random House College Dictionary defines the same as “an assem-
blage or combination of things or parts forming a complex or unitary whole.”
Le Petit Robert, in turn, defines system as “Ensemble possédant une structure,
constituont un tout organique,” which can be loosely translated as “A struc-
tured assemblage constituting an organic whole.” In the foregoing definitions,
we note that the underlying idea is that of a set of elements interacting as a
whole.

On the other hand, a dynamic system is a subset of the set of systems. For
our purposes, we can dispense with a rigorous definition of this concept. Suffice
it to say that, to qualify as dynamic, a system should be endowed with three
elements, namely, a state, an input, and an output, in addition to a rule of tran-
sitton from one current state to a future one. Moreover, the state is a functional
of the input and a function of a previous state. In this concept, then, the idea of
order is important, and can be taken into account by properly associating each
state value with time. The state at every instant is a functional, as opposed to
a function, of the input, which is characteristic of dynamic systems. This means
that the state of a dynamic system at a certain instant is determined not only
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by the value of the input at that instant, but also by the past history of the
input—besides, of course, its initial state. By virtue of this property, dynamic
systems are said to have memory.

On the contrary, systems whose state at a given instant is only a function
of the input at the current time are static, and said to have no memory. Addi-
tionally, since the state of a dynamic system is a result of all the past history
of the input, the future values of this having no influence on the state, dynamic
systems are said to be nonanticipative or cousal. By the same token, systems
whose state is the result of future values of the input are said to be anticipative
or noncausal. In fact, we need not worry about the latter, and hence, all systems
we will study will be assumed to be causal.

Obviously, a mechanical system is a system composed of mechanical ele-
ments. If this system complies with the definition of dynamic system, then we
end up with a dynamic mechanical system. For brevity, we will refer to such
systems as mechanical systems, the dynamic property being implicit throughout
the book. Mechanical systems of this type are those that occur whenever the
inertia of their elements is accounted for. Static mechanical systems are those
in which inertia is neglected. Moreover, the elements constituting a mechanical
system are rigid and deformable solids, compressible and incompressible fluids,
and inviscid and viscous fluids.

From the foregoing discussion, then, it is apparent that mechanical systems
can be constituted either by lumped-parameter or by distributed-parameter
elements. The former reduce to particles; rigid bodies; massless, conservative
springs; and massless, nonconservative dashpots. The latter appear whenever
bodies are modeled as continuous media. In this book, we will focus on lumped-
parameter mechanical systems. In mechanical systems, the driving forces and
moments exerted by the actuators and the environment play the role of the
input, the set of signals picked up by the sensors that of the output. Finally, the
rules of transition are dictated by the laws of nature, especially from mechanics,
electromagnetics and biology.

Furthermore, a mechanical system can be either natural or engineered®,
the latter being the subject of our study. Engineered mechanical systems can
be either controlled or uncontrolled. Most engineering systems are controlled
mechanical systems, and hence, we will focus on these. Moreover, a controlled
mechanical system may be robotic or nonrobotic. The latter are systems supplied
with primitive controllers, mostly analog, such as thermostats, servovalves, etc.
Robotic mechanical systems, in turn, can be programmable, such as most current
industrial robots, or intelligent, as discussed below. Programmable mechanical
systems obey motion commands either stored in a memory device or generated
on-line. In either case, they need sensors, such as joint encoders, accelerometers,
and dynamometers.

Intelligent robots or, more broadly speaking, intelligent machines, are yet to
be demonstrated, but have become the focus of intensive research. If intelligent

!In the previous editions we had used the term “man-made” instead. To avoid a gender-
biased terminology, we could have used “artificial,” but this term, while meaning “human-
made,” also has a negative connotation: “lacking in natural or spontaneous quality.”
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machines are ever feasible, they will depend highly on a sophisticated sensory
system and the associated hardware and software for the processing of the infor-
mation supplied by the sensors. The processed information would then be sup-
plied to the actuators in charge of producing the desired robot motion. Contrary
to programmable robots, whose operation is limited to structured environments,
intelligent machines should be capable of reacting to unpredictable changes in an
unstructured environment. Thus, intelligent machines should be supplied with
decision-making capabilities aimed at mimicking the natural decision-making
process of living organisms. This is the reason why such systems are termed
intelligent in the first place. Thus, intelligent machines are expected to per-
ceive their environment and draw conclusions based on this perception. What
is supposed to make these systems intelligent is their capability of perceiving,
which involves a certain element of subjectivity. By far, the most complex of
perception tasks, both in humans and machines, is visual (Levine, 1985; Horn,
1986).

In summary, then, an intelligent machine is expected to (i) perceive the
environment; (i{) reason about this perception; (ii¢) make decisions based on
this reasoning; and (iv) act according to a plan specified at a very high level.
What the latter means is that the motions undergone by the machine are decided
upon based on instructions similar to those given to a human being, like bring
me a glass of water without spilling the water.

Whether intelligent machines with all the above features will be one day
possible or not is still a subject of discussion, sometimes at a philosophical
level. Penrose (1994) wrote a refutal to the claim that intelligent machines are
possible.

A genealogy of mechanical systems, including robotic ones, is given in Fig. 1.1.
In that figure, we have drawn a dashed line between mechanical systems and
other systems, both engineered and natural. This line is intended to emphasize
the interaction of mechanical systems with electrical, thermal, and other sys-
tems, including the human system, which is present in telemanipulators, to be
discussed below.

1.2 The General Architecture of Robotic Me-
chanical Systems

From Section 1.1, then, a robotic mechanical system is composed of a few sub-
systems, namely, (i) a mechanical subsystem composed in turn of both rigid and
deformable bodies, although the systems we will study here are composed only
of the former; (i7) a sensing subsystem; (i44) an actuation subsystem; (iv) a con-
troller; and (v) an information-processing subsystem. Additionally, these sub-
systems communicate among themselves via interfoces, whose function consists
basically of decoding the transmitted information from one medium to another.
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DYNAMIC
SYSTEMS

PHYSICAL NONPHYSICAL
NATURAL

~~~~~~~~~~~~~~

UNCONTROLLED [ CONTROLLED | ["nonrosoTIC |
PROGRAMMABLE TELEMANIPULATORS INTELLIGENT MACHINES
ROBOTS « Surface Manlpulators + Manipulators
* Manipulators » Space Manipulators * Rolling Robots
* Automatic Guided Vehicles + Underwater Manipulators + Dextrous Hands

+ Walking Machines

Figure 1.1: A genealogy of robotic mechanical systems

Figure 1.2 illustrates the general architecture> of a typical robotic mechani-
cal system. The input here is a prescribed task, which is defined either on the
spot or off-line. The former case is essential for a machine to be called intelli-
gent, while the latter is present in programmable machines. Thus, tasks would
be described to intelligent machines by a software system based on techniques
of artificial intelligence (AI). This system would replace the human being in
the decision-making process. Programmable robots require human intervention
either for the coding of preprogrammed tasks at a very low level or for tele-
manipulotion. A very low level of programming means that the motions of the
machine are specified as a sequence of either joint motions or Cartesian coordi-
nates associated with landmark points of that specific body performing the task
at hand. The output of a robotic mechanical system is the actual task, which is
monitored by the sensors. The sensors, in turn, transmit task information in the
form of feedback signals, to be compared with the prescribed task. The errors
between the prescribed and the actual task are then fed back into the controller,
which then synthesizes the necessary corrective signals. These are, in turn, fed

2In Ch. 4 we introduce the concept of robotic architecture, to indicate the geometry of
the underlying mechanical system. We refer here to the “general architecture” of the whole
robotic system, to distinguish between the two concepts.
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back into the actuators, which then drive the mechanical system through the
required task, thereby closing the loop. The problem of robot control has re-
ceived extensive attention in the literature, and will not be pursued here. The
interested reader is referred to the excellent works on the subject, e.g., those of
Samson, Le Borgne, and Espiau (1991); Khalil and Dombre (2002); and Spong,
Hutchinson and Vidyasagar (2006). Of special relevance to robot control is the
subject of nonlinear control at large, a pioneer here being Isidori (1989).

task ROBOT | SIV error P&FS driving actual
CONTROLLER ACTUATORS - ROBOT
description | MODEL signals actions task
AJV INFORMATION c&ls
PROCESSING SENSORS
UNIT

SIV:  synthesized joint variables (angles and torques)
P&FS: position and force signals
C&JS: Cartesian and joint signals

AJV:  actual joint variables (angles and torques)

Figure 1.2: General architecture of a robotic mechanical system

Robotic mechanical systems with a human being in their control loop are
called telemanipulators. Thus, a telemanipulator is a robotic mechanical system
in which the task is controlled by a human, possibly aided by sophisticated
sensors and display units. The human operator replaces the ROBOT MODEL block
in the diagram of Fig. 1.2, produces the task description, becomes a part of
the sensory system, and plays a major role in the INFORMATION PROCESSING
UNIT block. Based on the information displayed, the operator makes decisions
about corrections in order to accomplish the prescribed task. Shown in Fig. 1.3
is a telemanipulator designed for space applications, namely, the Canadarm2,
along with DEXTRE, the Special-Purpose Dextrous Manipulator (SPDM), both
mounted on the Mobile Servicing System (MSS), a module of the International
Space Station. Moreover, a detailed view of DEXTRE is shown in Fig. 1.4.
In the manipulators of these two figures, the human operator is an astronaut
who commands and monitors the motions of the robot from inside the EVA
(extravehicular activity) workstation. The number of controlled axes of each
of these manipulators being larger than six, both are termed redundant. The
challenge here is that the mapping from task coordinates to joint motions is
not unique, and hence, among the infinitely many joint trajectories that the
operator has at his or her disposal for a given task, an on-board processor must
evaluate the best one according to a performance criterion.
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Figure 1.3: Canadarm2 and DEXTRE (courtesy of the Canadian Space Agency)

1.2.1 Types of Robots by Function

When the first edition was written, in the early nineties, the classification of
robots was rather straightforward, for there were mainly two kinds: scrial and
parallel. Nowadays a robot classification is a daunting task, by virtue of the
intenge activity displayed in the areas of robotics research, robot design, innova-
tion and applications. For example, a look at the Table of Contents of the Pro-
ceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion will reveal a vast spectrum of robots currently working on the shopfloor, in
the operating room, in rehabilitation centers, and even at home. In attempting a
clagsification of robots, the most comprehensive criterion would be by function.
We thus have a tentative, but by no means comprehensive, classification:

e Manipulators: robotic arms and hands;

¢ motion generators: flight simulators; SCARA (Selective-Compliance As-
scmbly Robot Arm); and moving platforms at large;

# locomotors, a.k.a. mobile robots: legged and wheeled robots;
s swimming robots; and
¢ flying robots.

We expand below on these robot types.
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Figure 1.4: DEXTRE, the Special-Purpose Dextrous Manipulator (courtesy of
the Canadian Space Agency)

1.2.2 Types of Robots by Size

The most common type of robots under this criterion is macro-robots, or those
whose dimensions are measured in meter. These are robots with a recach of
typically a couple of meters. Shown in Fig. 1.5 is a heavy-duty robot, IRB-7600,
manufactured by ABB Robotics, with a reach of 2.800 m and a load-carrying
capacity of 3,332 N. This robot finds applications mainly in the manipulation
of heavy parts in the automobile industry.

Micro-robots bear dimensions allowing them a reach of a fraction of a mm.
For example, the robot. reported by Sun et al. (2005) for MEMS (micro-elec-
tromechanical systems) assembly, features a maximum reach of 100 um in each
of two orthogonal directions and one of 50 gm in a direction orthogonal to these
two.

1.2.3 Types of Robots by Application

Robot applications have widespread as much as robot architecturcs. Current
applications span the classical industrial robots for arc-welding, for example,
on to material-handling, surveillance, surgical operations, rehabilitation and
entertainment.

1.3 Manipulators

Of all robotic mechanical systems, manipulators deserve special attention for
various reasons. One is that, in their simplest form, as robotic arms, they
occur most frequently in industry. Another is that the architecture of robotic
arms constitutes the simplest of all robotic architectures, and hence, appear as
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Figure 1.5: The IRB-7600, a heavy-duty robotic arm with a serial architecture
(courtesy of ABB robotics)

constituents of other, more complex robotic mechanical systems, as will become
apparent in later chapters. A manipulator, in general, is a mechanical system
aimed at manipulating objects. Manipulating, in turn, means to move something
with one’s hands, as the word derives from the Latin manus, meaning hand. The
basic idea behind the foregoing concept is that hands are among the organs that
the human brain can control mechanically with the highest accuracy, as the work
of an artist like Picasso, of an accomplished guitar player, or of a surgeon can
attest.

A manipulator is thus any device that helps a human operator perform a
manipulating task. Although manipulators have existed ever since man created
the first tool, only very recently, namely, by the end of World War II, have
manipulators developed to the extent that they are now capable of actually
mimicking motions of the human arm, and of the human hand, for that matter.
In fact, during WWII, the need arose for manipulating probe tubes contain-
ing radioactive substances. This led to the first six-degree-of-freedom (DOF)
manipulators.

Shortly thereafter, the need for manufacturing workpieces with high accu-
racy arose in the aircraft industry, which led to the first numerically-controlled
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(NC) machine tools. The synthesis of the six-DOF manipulator and the NC ma-
chine tool produced what became the robotic manipulator. Thus, the essential
difference between the early manipulator and the evolved robotic manipulator is
the “robotic” qualifier, which came into the picture in the late sixties. A robotic
manipulator is to be distinguished from the early manipulator by its capabil-
ity of lending itself to computer control. While the early manipulator needed
the presence of a human in the loop, to have a master manipulator perform a
gesture, the robotic manipulator can be programmed once and for all to repeat
the same task forever. Programmable manipulators have existed for close to
30 years, since the advent of the microprocessor. Indeed, the microprocessor,
introduced in 1976 by Intel, allowed a human master to teach the manipula-
tor by actually driving the manipulator itself, or a replica thereof, through a
desired task, while recording all motions undergone by the master. Thus, the
manipulator would later repeat the identical task by mere playback. However,
the capabilities of industrial robots are fully exploited only if the manipulator is
programmed with software, rather than actually driving it through its task tra-
jectory, which many a time, e.g., in car-body spot-welding, requires separating
the robot from the production line for more than a week. One of the objectives
of this book is to develop tools for the programming of robotic manipulators.

Nevertheless, the capabilities offered by robotic mechanical systems go well
beyond the mere playback of preprogrammed tasks. Current research aims at
providing robotic systems with software and hardware that will allow them to
make decisions on the spot and learn while performing a task. The implementa-
tion of such systems calls for task-planning techniques that fall beyond the scope
of this book and, hence, will not be treated here. For a glimpse of such tech-
niques, the reader is referred to the work of Latombe (1991) and the references
therein.

1.3.1 Robotic Arms

Robotic manipulators first appeared as mechanical systems resembling the hu-
man arm. Robotic arms are thus constituted by a structure consisting of struc-
turally robust links coupled by either rotational or translating joints, the former
being called revolutes, the latter prismatic joints. Moreover, these structures
are a concatenation of links, thereby forming an open kinematic chain, with
each link coupled to a predecessor and a successor, except for the two end links,
which are coupled only to either a predecessor or to a successor, but not to both.
The robot displayed in Fig. 1.5 is an example of a robotic arm with strong links.

Because of the serial nature of the coupling of links in this type of manipula-
tor, even if they are supplied with structurally robust links, their load-carrying
capacity and their stiffness is too low when compared with the other multiaxis
machines, such as NC machine tools. Obviously, a low stiffness implies a low
positioning accuracy.
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1.3.2 Robotic Hands

Besides the hand, other mechanical subsystems constituting the human manip-
ulation system are the arm and the forearm. Moreover, the shoulder, coupling
the arm with the torso, can be regarded as a spherical joint, i.e., the concatena-
tion of three revolute joints with intersecting axes. Furthermore, the arm and
the forearm are coupled via the elbow, with the forearm and the hand finally
being coupled by the wrist. Frequently, the wrist is modeled as a spherical joint
as well, while the elbow is modeled as a simple revolute joint. Robotic mechan-
ical systems mimicking the motions of the arm and the forearm constitute the
manipulators discussed above. Here we outline more sophisticated manipula-
tion systems that aim at producing the motions of the human hand, i.e., robotic
hands. These systems are designed to perform manipulation tasks, a distinction
being made between simple manipulation and dextrous manipulation. What the
former means is the simplest form, in which the fingers play a minor role, namely,
by serving as simple static structures that keep an object rigidly attached with
respect to the palm of the hand—when the palm is regarded as a rigid body. As
opposed to simple manipulation, dextrous manipulation involves a controlled
motion of the grasped object with respect to the palm. Simple manipulation
can be achieved with the aid of a manipulator and a gripper, and need not be
further discussed here. The discussion here is about dextrous manipulation.

In dextrous manipulation, the grasped object is required to move with re-
spect to the palm of the grasping hand. This kind of manipulation appears in
performing tasks that require high levels of accuracy, like handwriting or cutting
tissue with a scalpel. Usually, grasping hands are multifingered, although some
grasping devices exist that are constituted by a simple, open, highly redundant
kinematic chain (Pettinato and Stephanou, 1989). The kinematics of grasping is
discussed in Chapter 10. The basic kinematic structure of a multifingered hand
consists of a palm, which plays the role of the base of a simple manipulator,
and a set of fingers. Thus, kinematically speaking, a multifingered hand has a
tree topology, i.e., it entails a common rigid body, the palm, and a set of jointed
bodies emanating from the palm. Upon grasping an object with all the fin-
gers, the chain becomes closed, with multiple loops. Moreover, the architecture
of the fingers is that of a simple manipulator, consisting of a number—two to
four—of revolute-coupled links playing the role of phalanges. However, unlike
manipulators of the serial type, whose joints are all independently actuated,
those of a mechanical finger are not and, in many instances, are driven by one
single master actuator, the remaining joints acting as slaves. Many versions of
multifingered hands exist: Stanford/JPL; Utah/MIT; TU Munich; Karlsruhe;
Bologna; Leuven; Milan; Belgrade; and University of Toronto, among others.
Of these, the Utah/MIT Hand (Jacobsen et al., 1984; 1986) is commercially
available. This hand carried four fingers, one of which is opposed to the other
three and hence, plays the role of the human thumb. Each finger consists, in
turn, of four phalanges coupled by revolute joints; each of these is driven by
two tendons that can deliver force only when in tension, each being actuated
independently. The TU Munich Hand, shown in Fig. 1.6(a), is designed with
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Figure 1.6: Two instances of robotic hands: (a)} The four-fingered hydraulically
actuated TU Munich Hand (courtesy of Prof. F. Pfeiffer); and (b) Université
Laval's, three-fingered SARAH (courtesy of Prof. C. Gosselin)

four identical fingers laid out symmetrically on a hand palm. This hand is
hydraulically actuated, and provided with a very high payload-to-weight ratio.
Indeed, each finger weighs only 1.470 N, but can exert a force of up to 30 N. A
three-fingered hand with 12 deprees of freedom and six actuators, SARAH, was
designed at Université Laval’s Laboratoire de Robotique. This hand, illustrated
in Fig. 1.6(b), is twice as big as the human hand, weighs 88.2 N, and can hold
a 686-N load (Laliberté et al., 2002; Laliberté and Gosselin, 2003)

We outline below some problems and rescarch trends in the area of dextrous
hands. A key issue here is the programming of the motions of the fingers, which
is a much more complicated task than the programming of a six-axis manip-
ulator. In this regard, Liu et al. (1989) introduced a task-analysis approach
intended to program robotic hand motions at a higher level. These researchers
used a heuristic, knowledge-based approach. From an analysis of the various
modes of grasping, they concluded that the requirements for grasping tasks are
(%) stability, (ii) manipulability, (ii) torquability, and (iv) radial rotatability.
Stability is defined as a measure of the tendency of an object to return to its
original position after disturbances. Manipulability, as understood in this con-
text, is the ability to impart motion to the object while keeping the fingers in
contact with the objeet. Torquability, or tangential rotatability, is the ability to
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rotate the long axis of an object—here the authors must assume that the ma-
nipulated objects are convex and can be approximated by three-axis ellipsoids,
thereby distinguishing between a long and a short axis—with a minimum force,
for a prescribed amount of torque. Finally, radial rotatability is the ability to
rotate the grasped object about its long axis with minimum torque about the
axis.

Furthermore, Allen et al. (1989) introduced an integrated system of both
hardware and software for dextrous manipulation. The system integrates force
and position sensors with control commands for both the arm and the hand. To
demonstrate the effectiveness of their system, the authors implemented a task
consisting of removing a light bulb from its socket. Rus (1992) proposed, in
turn, a paradigm allowing the high-level, task-oriented manipulation control of
planar hands.

While the technological aspects of dextrous manipulation are highly ad-
vanced, theoretical aspects are still under research in this area. An extensive
literature survey, with 405 references on the subject of manipulation, was given
by Reynaerts (1995). But that was the state of the art more than 10 years ago.
In the 2005 IEEFE International Conference on Robotics and Automation, there
were five sessions on grasping, robotic-finger design, robotic hands and dextrous
manipulation. An interesting approach to the programming of dextrous hands,
programming by demonstration, was reported by Ekvall and Kragié¢ (2005), un-
der which the robotic hand is taught how to reproduce the grasping sequences
of a human hand. The use of vision as a means of grasp-planning was also
reported in this conference (Gockel et al., 2005).

1.4 Motion Generators

Under this heading we include robotic systems designed to produce a certain
class of motions for various purposes, ranging from manipulation tasks, e.g.,
the positioning of a camera for surveillance, to the orientation of a surgeon’s
scalpel, on to moving platforms for pilot training, as in flight simulators, or for
entertainment, to give people the realism of an earthquake or a roller-coaster,
or simply of following a musical rhythm. Many a motion generator is supplied
with a parallel architecture, as described below.

1.4.1 Parallel Robots

Parallel robots were originally proposed to cope with the problems encountered
with their serial counterparts (Merlet, 2006), namely, a limited load-carrying
capacity, low accuracy, and low stiffness. This kind of robots was thus intro-
duced to withstand higher payloads with lighter links. In a parallel robot, we
distinguish one base platform, one moving platform, and various legs or limbs.
Each leg is, in turn, a kinematic chain of the serial type, whose end-links are the
two platforms. Contrary to serial robots, all of whose joints are actuated, paral-
lel robots are supplied with unactuated joints, which brings about a substantial
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Figure 1.7: Université Laval’s Agile Eye, a three-degree-of-freedom spherical
robot. with a parallel architecture (courtesy of Prof. Clément. Gosselin)

difference between the two types. The presence of unactuated joints makes the
analysis of parallel manipulators, in general, more complex than that of serial
robots.

A paradigm of parallel manipulators is the flight simulator, consisting of six
legs actuated by hydraulic pistons. The flight simulator with this architecture
motivated the early work, starting in the late eighties, on parallel robots. Re-
cently, an explosion of novel designs of parallel robots has occurred, aimed at
fast manipulation tasks. An example of these robots, departing from the archi-
tecture of flight simulators, is Université Laval’s Agile Eye, depicted in Fig. 1.7.
This robot is designed with one fixed base and one moving platform, that carries
a small camera. Basc and platform are coupled by means of three identical legs,
cach composed of two links and three revolute joints®. Moreover, the axes of
all nine revolutes intersect at one single point, the center of the mechanical sys-
tem. For this reason, all robot links move, with respect to the base, under pure
rotation, with the robot center remaining fixed. All three direct-drive motors

211 can be appreciated in Fig. 1.7 that the proximal links are made up of two curved beams,
each with an axis in the form of one-quarter of a circle. These two beams are rigidly fastened,
with their planes forming a 90° dihedral angle.
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are mounted on the base, and actuate the proximal links of the legs. This robot
can reportedly produce angular velocities of the camera as high as 1,000°/s and
angular aceelerations of 20,000°/s?.

Figure 1.8: FlexPicker, a realization of EPFL’s Delta Robot (courtesy of ABB
Robotics)

Other parallel robots have been designed for fast assembly operations, e.g.,
the Delta robot (Clavel, 1988), developed at the Lausanne Federal Polytechnic
Institute (EPFL). The Delta robot was designed to produce pure translations
of its end-platform in 3D space. An instance of this robot, the FlexPicker, is
shown in Fig. 1.8. This robot is designed with three identical legs, hanging from
the ceiling, which is the robot base. Fach leg carries one proximal link, coupled
to the base by a revolute, which is actuated by the leg-motor. Furthermore,
this link is coupled to the end-plate by means of two revolutes and onc novel
kinematic pair, the II-pair, which is nothing but a parallelogram four-bar link-
age, the II-pair being located between the two revolutes. It is noteworthy that
the FlexPicker is supplied with one additional actuated joint, at the interface
between the moving platform of the original Delta Robot and the gripper, ap-
pearing in the figure as a cylindrical piece. This revolute is actuated from the
base by means of a transmission mechanism stemming from the center of the
base in the figure,
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Figure 1.9: A sample of parallel manipulators: (a) The UTTAS Trussarm (cour-
tesy of Prof. P. C. Hughes); (b) the Merlet left hand (courtesy of Dr. J.-P.
Merlet); and (c) the Hayward shoulder module (courtesy of Prof. V. Hayward)

Other instances of parallel robots can be cited: Hexa (Pierrot et al., 1991),
developed at Université de Montpellier, as a six-degree-of-freedom extension of
Clavel’s Delta Robot; Star (Hervé and Sparacino, 1992), developed at Ecole
Centrale of Paris; the Trussarm, developed at the University of Toronto Insti-
tute of Aerospace Studies (UTIAS), shown in Fig. 1.9(a) (Hughes et al., 1991);
INRIA’s main gauche, or left hand, developed by Merlet (2006)* and shown
in Fig. 1.9(b), which is used as an aid to another robot, possibly of the serial

4INRIA is France’s Institut National de Recherche en Informatique et en Automatique,
the left hand, and other parallel robots having been developed at INRIA’s center at Sophia-
Antipolis, France.
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type, to enhance its dexterity; and McGill University’s parallel manipulator,
intended as a shoulder module for orientation tasks (Hayward, 1994), and capa-
ble of three-degree-of-freedom motions, produced by four hydraulic actuators,
which gives the robot redundant actuation—Fig. 1.9(c).

1.4.2 SCARA Systems

SCARA is an acronym standing for Selective-Compliance Assembly Robot Arm,
as coined by Hiroshi Makino (Makino and Furuya, 1980), the inventor of this new
class of robots. The class was proposed as a means to provide motion capabilities
to the end-effector that are required by the assembly of printed-board circuits
and other electronic devices with a flat geometry. Motions consist of three
independent translations and one rotation about an axis of fixed orientation,
usually vertical. These robots have received special attention because of their
special structure, offering an extremely high stiffness about two axes of tilting—
the axes normal to the axis of rotation. The first robots of this kind appeared
with a serial architecture, involving three revolutes and one prismatic joint, the
latter being located either at the base or at the end-effector. These robots have
attained impressive performance, capable of cycle times of 500 ms or lower,
for a standard pick-and-place operation consisting of: a) upwards translation
of 25 mm; b) horizontal translation of 300 mm, concurrently rotating through
an angle of 180°; and ¢) downwards translation of 25 mm. The cycle is closed
by returning to the original posture following exactly the same displacement
program, but in the reverse order.

Given the serial architecture of most SCARA systems, it appears that the
cycle times are extremely difficult to cut further and the load-carrying capacity
is equally difficult to increase. This state of affairs has motivated the emer-
gence of alternative architectures, such as parallel or hybrid (serial-parallel).
For example, Fanuc’s M410iB and ABB Robotics’ IRB 660 robot feature hy-
brid SCARA architectures with long reaches, of around 3 m and payloads of
above 2000 N. The manufacturers did this by means of parallelogram linkages
capable of transmitting torque and motion from a common base, turning about
a vertical axis, to two horizontal revolute joints, the fourth revolute having a
vertical axis. Interestingly, although these robots are medium-to-heavy-duty
SCARAs, the manufacturers bill them as “palletizing robots,” with no relation
to SCARAs. As a matter of fact, SCARAs can be regarded as generators of
the Schonflies displacement subgroup (Bottema and Roth, 1979; Hervé, 1999).
For this reason, SCARA systems are currently referred to as Schinflies-motion
generators. An architecture for a hybrid SCARA departing from those of the
M410iB and the IRB 660 robots features two pairs of pan-tilt drives in series,
each being constituted by a RII dyad, with the II-joint having been defined in
connection with Fig. 1.9. One innovative serial-parallel SCARA system with
this architecture was introduced by Angeles et al. (2000).

In yet another attempt to overcome the natural limitations of serial SCARAs,
parallel architectures have been proposed: H4, a four-limb Schoénflies-motion
generator developed at France’s Université de Montpellier (Company et al.,
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2001); the four-limb robot driven with actuated prismatic joints developed at
Institut Frangais de Mécanigue Avancée (Gogu, 2004); and the MeGill SMG
developed at McGill Univesity (Al-Widyan and Angeles, 2004), that features
only two limbs.

1.5 Locomotors

Under locomotors we include all robots capable of displacing themselves on a
surface without any attachment to the surface. Here we distinguish two kinds
of robots, legged and wheeled, as outlined below.

1.5.1 Legged Robots

A common architecture of walking machines is the hexapod, examples of which
arc the Ohio State University (OSU) Hexapod (Klein et al., 1983) and the OSU
Adaptive Suspension Vehicle (ASV) (Song and Waldron, 1989). A six-legged
walking machine with a design that mimics the locomotion system of the Carau-
sius morosus (Graham, 1972), also known as the walking stick, was developed
at the Technical University of Munich (Pfeiffer et al., 1995). A prototype of
this machine, known as the TUM Hezapod, i3 included in Fig. 1.10. The legs
of the TUM Hexapod are operated under neural-network control, which gives
them a reflex-like response when encountering obstacles: Upon sensing an ob-
stacle, the leg bounces back and tries again to move forward, but raising the
foot to a higher level, Other legged robots worth mentioning as pioncers are the
Sutherland, Sprout and Associates Hexapod (Sutherland and Ullner, 1984), the
Titan series of quadrupeds (Hirose et al., 1985) and the Odetics series of axially
symmetric hexapods (Russell, 1983).

Figure 1.10: A prototype of the TU Munich Hexapod (Courtesy of Prof. F. Pfeif-
fer. Reproduced with permission of TSI Enterprises, Inc.)
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Figure 1.11: RHEX, a six-legged robot (Courtesy of G. Dudek, McGill Univer-
sity)

A gurvey of walking machines, of a rather historical interest now, was given
in (Todd, 1985), while a more recent comprehensive account of walking machines
is available in a special issue of The International Journal of Robotics Research
(Volume 9, No.2, 1990).

Walking machines appear as the sole means of providing lJocomotion in highly
unstructured cnvironments. In fact, the unique adaptive suspension provided
by these machines allows them to navigate on uneven terrain. However, walking
machines cannot traverse every type of uneven terrain, for they are of limited
dimensions. Hence, if terrain irregularitics such as a crevasse wider than the
maximum horizontal leg reach or a cliff of depth greater than the maximum
vertical leg reach are present, then the machine is prevented from making any
progress. This limitation, however, can be overcome by providing the machine
with the capability of attaching its feet to the terrain in the same way as a
mountain climber goes up a cliff. Moreover, machine functionality is limited
not only by the topography of the terrain, but also by the terrain constitution.
Whereas hard rock poses no serious problem to a walking machine, muddy
terrain can hamper its operation to the point that it may jam the machine. Still,
under such adverse conditions, walking machines offer a better maneuverability
than other vehicles. Recent work at McGill University® on legged locomotion
has led to robots with robust designs allowing them to negotiate mud and even
ponds. A serics of hexapods, under the name RHEX, has been developed with
these features, as shown in Fig. 1.11. The same robot is shown in Fig. 1.12
roaming a patterned floor, to give a clue on its dimensions, of about 500 mm in

5Originally led by Prof. Martin Buehler,
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Figure 1.12: RHEX walking on a patterned floor, to indicate its dimensions
(Courtesy of G. Dudek, McGill University)

length.

Humanoids

An important class of legged robots is constituted by humanoids. Pioncer work
by Vukobratovic and Stepanenko (1972) has led to modern bipeds exhibiting
impressive performance. Indeed, work initiated in 1986 at Honda led to ASIMO,
a robotic mechanical system integrating both manipulation and locomotion in
one single unit.

Research in humanoids is quite intensive at the moment, with eight sessions
on the subject during the 2005 IEEE International Conference on Robotics and
Automation, including controls, motion-planning, design, voice-mimicry, and
human-robot interaction.

1.5.2 Wheeled Robots

Robots in this category are systems evolved from earlicr systems called auto-
matic guided vehicles, or AGVs for short. AGVs in their most primitive versions
are four-wheeled, electrically powered vehicles that perform moving tasks with a
certain degree of autonomy. However, these vehicles are usually limited to mo-
tions along predefined tracks that arc either railways or magnetic strips glued
to the ground.

The most common rolling robots use conventional wheels, i.e., whecls con-
sisting basically of a pncumatic tire mounted on a hub that rotates about an
axle fixed to the robot platform. Thus, the operation of these machines does not
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Figure 1.13: (a) A sample of omnidirectional wheels, the 4202KX and the
2052KX Cat-Trak Transwheel (courtesy of Kornylak Corporation); and (b) a
computer model of a rolling robot supplicd with ODW carrying rollers at an
acute angle with the hub axis

differ much from that of conventional terrestrial vehicles. An essential difference
between rolling robots and other robotic mechanical systems is the kinematic
constraints between wheel and ground in the former. These constraints are of
a type known as nenholonomic, as discussed in detail in Chapter 12. Nonholo-
nomic constraints are kinematic relations between point velocities and angular
velocities that cannot be integrated in the form of algebraic relations between
translational and rotational displacement variables. The outcome of this lack
of integrability leads to a lack of a one-to-one relationship between Cartesian
variables and joint variables. In fact, while angular displacements read by joint
encoders of serial manipulators determine uniquely the position and orientation
of their end-effector, the angular displacement of the wheels of rolling machines
do not determine the position and orientation of the vehicle body. As a matter of
fact, the control of rolling robots bears common features with the redundancy-
resolution of manipulators of the serial type at the joint-rate level. In these
manipulators, the number of actuated joints is greater than the dimension of
the task space. As a consequence, the task velocity does not. determine the joint
rates. Not surprisingly, the two types of problems have been solved using the
same tools, namely, differential geometry and Lic algebra (De Luca and Oriolo,
1995).

As a means to supply rolling robots with three-dof capabilities, not found
in conventional terrestrial vehicles, omnidirectional wheels (ODW) have been
developed. Examples of ODW bear names such as Mekonum wheels, Swedish
wheels, ilonators, or others. ODW consist of a hub with rollers on its periphery
that roll freely about their axes, the latter being oriented at a constant angle
with respect to the hub axis. In Fig. 1.13(a), two commercial ODW, the 4202KX
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Figure 1.14: QUASIMORO, a quasiholonomic mobile robot

and the 2052KX Cat-Trak Transwheels® are shown; in Fig. 1.13(b), the com-
puter model of a rolling robot supplied with Mekanum wheels, bearing rollers
at an acute angle with the hub axis, is depicted. Rolling robots with ODW
arce, thus, three-dof vehicles, and hence, can translate freely in two horizontal
directions and rotate independently about a vertical axis. However, like their
two-dof counterparts, three-dof rolling robots are also nonholonomic devices,
and thus, pose the same problems for their control as the former.

Further developments in the technology of rolling robots have been reported
that incorporate alternative types of ODWs. For example, Killough and Pin
(1992) developed a rolling robot with what they call erthogonal bell wheels,
consisting basically of spherical whecls that can rotate about two mutually or-
thogonal axcs. Borenstein (1993) proposed a mobile robot with four degrees
of freedom; these were achieved with two chassis coupled by an extensible link,
each chassis being driven by two actuated conventional wheels. West and Asada
(1995), in turn, designed a rolling robot with ball wheels, i.e., balls that act as
omnidirectional wheels; each ball is mounted on a set of rollers, one of which
is actuated; hence, three such wheels are necessary to fully control the vehicle.
The unactuated rollers serve two purposes, i.e., to provide stability to the wheels
and the vehicle, and to measure the rotation of the ball, thereby detecting slip.

Mobile Wheeled Pendulums

A new class of whecled robots has emerged since the turn of the century. This
class, known as mobile wheeled penduluwms (MWP), comprises two coaxial wheels
and an intermediate body, the challenge being to control both the motion of
the common wheel axis and that of the intermediate body. Interest on the

5The two wheels bear synthetic rubber-coated polypropylene rollers: the larger wheel has
a 4” diameter, with a 17 inside diameter; the smaller wheel has a 2” diameter, with a 1/2”
inside diameter.
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subject was probably promoted by the US patent behind the Ginger and the
Segway Human Transporter projects (Kamen et al., 1999). Another mobile
inverted pendulum is known as JOE (Grasser et al., 2002). More recently, a
new class of nonholonomic mechanical systems was found that lies somewhat
between holonomic and nonholonomic systems; these systems were thus termed
quasiholonomic (Ostrovskaya and Angeles, 1998). A realization of this class
was reported by Salerno and Angeles (2004), featuring Quasimoro, shown in
Fig. 1.14, a quasiholonomic mobile robot intended as a service robot for para-
plegics. Quasimoro’s central body is to carry food, drinks and books to the user.
This robot also falls within the category of MWP. A feature common to this
category, that is not encountered in other wheeled robots, is that their central
body, which constitutes the robot platform, can rotate about the wheel axis,
This motion should be controlled, thereby leading to a new challenging problem,
which is the stabilization of the central body, aside the classical control problem
due to nonholonomy.

Figure 1.15: Aqua, an amphibious robot (Courtesy of G. Dudek/M. Jenkin on
behalf of the Aqua Project)

1.6 Swimming Robots

A novel class of robots with swimming capabilities is currently under devel-
opment in various research laboratories, with three sessions on the subject at
the 2005 IEEE International Conference on Robotics and Automation. Some
of these robots have been designed with the morphology of fish (Yu and Wang,
2005; Liu and Hu, 2005). One swimming robot designed with a hexapod mor-
phology, featuring six flippers in lieu of legs is Aqua, developed at McGill Uni-
versity, and depicted in Figs. 1.15 and 1.16. The latter shows Aqua with its
designer, Chris Prahacs.
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Figure 1.16: Aqua, swimming under monitoring by its designer (Courtesy of G.
Dudek/M. Jenkin on behalf of the Aqua Project)

1.7 Flying Robots

This field is becoming quite active, with some robots mimicking the morphology
of insects, and falling into the category of micro-robots (Steltz, Wood, Avad-
hanula and Fearing, 2005); other flying robots are designed as unmanned aerial
vehicles (UAV) (Kadniche et al., 2005; Rongier et al., 2005).



24 1. An Overview of Robotic Mechanical Systems

1.8 Exercises

The exercises included below are intended to familiarize the uninitiated reader
with the issues involved in robotics, especially in the area of robotic mechanical
systems. A major issue, regrettably quite often overlooked, is terminology. In
attempting to work out these exercises, the beginner should be able to better
understand the language of robotics and realize that a common terminology is
not yet available. Some exercises are provided as an aid to either recall or learn
fundamental computational issues that are extremely useful in the development
of algorithms for the analysis, simulation and control of robotic mechanical
systems.

1.1 List some definitions of machine, say about half a dozen, trying to cover
the broadest timespan to date. Hint: Hartenberg and Denavit (1964) list
a few bibliographical references.

1.2 Try to give an answer to the question: Are intelligent machines possible?
Express your own ideas and explore what scientists like Penrose (1994)
think about this controversial issue.

1.3 What is the difference among machine, mechanism, and linkage? In par-
ticular, analyze critically the definitions given by authorities, such as those
found in the most respected dictionaries, encyclopedias, and archival doc-
uments of learned societies, e.g., the complete issue of Vol. 38, Nos. 7-10
(2003) of Mechanism and Machine Theory on Standardization of Termi-
nology.

1.4 What is artificial intelligence? What is fuzzy logic? Can the techniques
of these fields be applied to robotics?

1.5 What is mechatronics? What is the difference between mechatronics and
robotics? Comerford (1994) and Soureshi et al. (1994) give an account on
this technology.

1.6 What do you understand as dexterity? The concept of dexterity is nor-
mally applied to persons. Can it be applied to animals as well? What
about machines?

1.7 Define the term algorithm. In this context, make a clear distinction be-
tween recursion and iteration. Note that, in the robotics literature, there
is often confusion between these two terms in particular. Make sure that
you do not make the same mistake! Again, Penrose (1994) has provided
an extensive discussion on the nature of algorithms.

1.8 What is the difference among terms like real-time, on-line, and run-time?

1.9 How fast can two floating-point numbers be multiplied using a personal
computer? What about using a UNIX workstation? a supercomputer?
Write a piece of code to estimate this time on your computer facility.
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1.10 Answer the foregoing question as pertaining to floating-point addition.

1.11 What is the smallest floating-point number on your computer? Rather
than looking for the answer in manuals, write a procedure to estimate it.

1.12 What is the difference between procedural programming and object-oriented
programming? In terms of programming languages, what is the difference
between C and C++? Rumbaugh et al. (1991) provide an introduction
to object-oriented programming, while Stroustrup (1991) gives an intro-
duction to C+-+.



Chapter 2

Mathematical Background

2.1 Preamble

First and foremost, the study of motions undergone by robotic mechanical sys-
tems or, for that matter, by mechanical systems at large, requires a suitable
motion representa}ion. Now, the motion of mechanical systems involves the
motion of the particular links comprising those systems, which in this book are
supposed to be rigid. The assumption of rigidity, although limited in scope, still
covers a wide spectrum of applications, while providing insight into the motion
of more complicated systems, such as those involving deformable bodies.

The most general kind of rigid-body motion consists of both translation and
rotation. While the study of the former is covered in elementary mechanics
courses and is reduced to the mechanics of particles, the latter is more chal-
lenging. Indeed, point translation can be studied simply with the aid of 3-
dimensional vector calculus, while rigid-body rotations require the introduction
of tensors, i.e., entities mapping vector spaces into vector spaces.

Emphasis is placed on invariant concepts, i.e., items that do not change upon
a change of coordinate frame. Examples of invariant concepts are geometric
quantities such as distances and angles between lines. Although we may resort
to a coordinate frame and vector algebra to compute distances and angles, and
will represent vectors in that frame, the final result will be independent of how we
choose that frame. The same applies to quantities whose evaluation calls for the
introduction of tensors. Here, we must distinguish between the physical quantity
represented by a vector or a tensor and the representation of that quantity in
a coordinate frame using a 1-dimensional array of components in the case of
vectors, or a 2-dimensional array in the case of tensors. It is unfortunate that
the same word is used in English to denote a vector and its array representation
in a given coordinate frame. Regarding tensors, the associated arrays are called
matrices. By abuse of terminology, we will refer to both tensors and their
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arrays as matrices, although keeping in mind the essential conceptual differences
involved.

2.2 Linear Transformations

The physical 3-dimensional space is a particular case of a vector space. A vec-
tor space is a set of objects, called vectors, that follow certain algebraic rules.
Throughout the book, vectors will be denoted by boldface lowercase characters,
whereas tensors and their matrix representations will be denoted by boldface
uppercase characters. Let v, vi, vo, v3, and w be elements of a given vector
space V, which is defined over the real field, and let o and 8 be two elements
of this field, i.e., @ and § are two real numbers. Below we summarize the rules
mentioned above:

(1) The sum of v; and v,, denoted by v; + va, is itself an element of V and
is commutative, i.e., Vi + Vo = vg -+ vy;

(i) V contains an element 0, called the zero vector of V, which, when added
to any other element v of V), leaves it unchanged, i.e., v+ 0 = v;

(#9i) The sum defined in (¢) is associative, i.e., vi + (Vo +v3) = (v1 + Vo) +v3;

(fv) For every element v of V, there exists a corresponding element, w, also
of V, which, when added to v, produces the zero vector, i.e., v+ w = 0.
Moreover, w is represented as —v;

(v) The product av, or va, is also an element of V, for every v of V and every
real a. This product is associative, i.e., a(8v) = (af)v;

(vi) If « is the real unity, then av is identically v;

(vii) The product defined in (v) is distributive in the sense that (a) (a+ 8)v =
av + fv and (b) a(vy + va) = avy + ava.

Although vector spaces can be defined over other fields, we will deal with
vector spaces over the real field, unless explicit reference to another field is made.
Moreover, vector spaces can be either finite- or infinite-dimensional, but we will
not need the latter. In geometry and elementary mechanics, the dimension of
the vector spaces needed is usually three, but when studying multibody systems,
an arbitrary finite dimension will be required. The concept of dimension of a
vector space is discussed in more detail later.

A linear transformation, represented as an operator L, of a vector space If
into a vector space V, is a rule that assigns to every vector u of U at least one
vector v of V, represented as v = Lu, with L endowed with two properties:

(1) homogeneity: L{ou) = av; and
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(%) additivity: L(ug + u2) = v1 + va.

Note that, in the foregoing definitions, no mention has been made of com-
ponents, and hence, vectors and their transformations should not be confused
with their array representations.

Particular types of linear transformations of the 3-dimensional Euclidean
space that will be encountered frequently in this context are projections, reflec-
tions, and rotations. One further type of transformation, which is not linear,
but nevertheless appears frequently in kinematics, is the one known as affine
transformation. The foregoing transformations are defined below. It is nec-
essary, however, to introduce additional concepts pertaining to general linear
transformations before expanding into these definitions.

The range of a linear transformation L of I/ into V is the set of vectors v
of V into which some vector u of I/ is mapped, i.e., the range of L is defined
as the set of v = Lu, for every vector u of /. The kernel of L is the set of
vectors uy of U that are mapped by L into the zero vector 0 € V. It can be
readily proven (see Exercises 2.1-2.3) that the kernel and the range of a linear
transformation are both vector subspaces of U and V, respectively, i.e., they are
themselves vector spaces, but of a dimension smaller than or equal to that of
their associated vector spaces. Moreover, the kernel of a linear transformation
is often called the nullspace of the said transformation.

Henceforth, the 3-dimensional Euclidean space is denoted by £®. Having
chosen an origin O for this space, its geometry can be studied in the context
of general vector spaces. Hence, points of £2 will be identified with vectors of
the associated 3-dimensional vector space. Moreover, lines and planes passing
through the origin are subspaces of dimensions 1 and 2, respectively, of £3.
Clearly, lines and planes not passing through the origin of £2 are not subspaces
but can be handled with the algebra of vector spaces, as will be shown here.

An orthogonal projection P of £3 onto itself is a linear transformation of the
said space onto a plane IT passing through the origin and having a unit normal
n, with the properties:

P?=P, Pn=0 (2.1a)

Any matrix with the first property above is termed idempotent. For n x n
matrices, it is sometimes necessary to indicate the lowest integer ! for which an
analogous relation follows, i.e., for which P! = P. In this case, the matrix is
said to be idempotent of degree [.

Clearly, the projection of a position vector p, denoted by p’, onto a plane
IT of unit normal n, is p itself minus the component of p along n as shown in
Fig. 2.1, i.e,,

p' =p—n(n’p) (2.1b)

where the superscript T’ denotes either vector or matrix transposition and n”p
is equivalent to the usual dot product n - p.

Now, the identity matrix 1 is defined as the mapping of a vector space V
into itself leaving every vector v of V unchanged, i.e.,

lv=v (2.2)
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P

Figure 2.1: A projection onto a plane I7 of unit normal n

Thus, p’, as given by eq.(2.1b), can be rewritten as
p'=1p—nnTp= (1 -—nnT)p (2.3)
and hence, the orthogonal projection P onto IT can be represented as
P=1-nn” (2.4)

where the product nn” amounts to a 3 x 3 matrix.

Now we turn to reflections. Here we have to take into account that reflec-
tions occur frequently accompanied by rotations, as yet to be studied. Since
reflections are simpler to represent, we first discuss these, rotations being dis-
cussed in full detail in Section 2.3. What we shall discuss in this section is pure
reflections, i.e., those occurring without any concomitant rotation. Thus, all re-
flections studied in this section are pure reflections, but for the sake of brevity,
they will be referred to simply as reflections.

A reflection R of £3 onto a plane IT passing through the origin and having a
unit normal n is a linear transformation of the said space into itself, as depicted
in Fig. 2.2, such that a vector p is mapped by R into a vector p’ given by

p'=p-2nnTp=(1-2nnT)p

Thus, the reflection R can be expressed as
R=1-2nn7 (2.5)

From eq.(2.5) it is then apparent that a pure reflection is represented by a
linear transformation that is symmetric and whose square equals the identity
matrix, i.e., R2 = 1. Indeed, symmetry is apparent from the equation above;
the second property is readily proven below:

R? = (1 — 20n7)(1 - 2nn7)
=1-2nn7 — 2nn7 + 4(anT)(nnT) = 1 — 40nT + 4n(0Tn)n?
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Figure 2.2: A reflection onto a plane IT of unit normal n

which apparently reduces to 1 because n is a unit vector. Note that from the
second property above, we find that pure reflections observe a further interesting
property, namely,

R!'=R

i.e., every pure reflection equals its inverse. This result can be understood
intuitively by noticing that, upon doubly reflecting an image using two mirrors,
the original image is recovered. Any square matrix which equals its inverse will
be termed self-inverse henceforth.
Further, we take to deriving the orthogonal decomposition of a given vector
v into two components, one along and one normal to a unit vector e. The
component of v along e, termed here the azial component, v|—read v-par—is
simply given as
v = eeTv (2.6a)

while the corresponding normal component, v, —read v-perp—is simply the
difference v — vy, i.e.,

viEv-vy=(1- eel)v (2.6b)

the matrix in parentheses in the foregoing equation being rather frequent in
kinematics. This matrix will appear when studying rotations.

Further concepts are now recalled: The basis of a vector space V is a set of
linearly independent vectors of V, {v;}7, in terms of which any vector v of V
can be expressed as

Vv=a1vy +aavyt+ -+ anvy (2.7)

where the elements of the set {a;}7 are all elements of the field over which V
is defined, i.e., they are real numbers in the case at hand. The number n of
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elements in the set B = {v;}7 is called the dimension of V. Note that any set
of n linearly independent vectors of V can play the role of a basis of this space,
but once this basis is defined, the set of real coefficients {a;}} representing a
given vector v is unique.

Let U/ and V be two vector spaces of dimensions m and n, respectively, and
L a linear transformation of { into V, and define bases By and By for & and V
as

By = {w;}1*, Bv ={vi}t (2.8)

Since each Lu; is an element of V, it can be represented uniquely in terms of
the vectors of By, namely, as

Lu; =ljvi+bjva+---+1lajve, j=1,...,m (2.9)

Consequently, in order to represent the images of the m vectors of By,
namely, the set {Lu;}{*, n x m real numbers l;;, for ¢ = 1,...,n and j =
1,...,m, are necessary. These real numbers are now arranged in the n x m

array [L]gl‘; defined below:

il - lim
b1 lao - by

Llgv=|. . . . (2.10)
lnl ln2 ot lnm

The foregoing array is thus called the matriz representation of L with respect
to By and By. We thus have an important definition:

Definition 2.2.1 The jth column of the matriz representation of L with re-
spect to the bases By and By is composed of the n real coefficients l;; of the
representation of the image of the jth vector of By in terms of By .

The notation introduced in eq.(2.10) is rather cumbersome, for it involves
one subscript and one superscript. Moreover, each of these is subscripted. In
practice, the bases involved are self-evident, which makes an explicit mention
of these unnecessary. In particular, when L is a mapping of U/ onto itself, a
single basis suffices to represent L in matrix form. In this case, its bracket will
bear only a subscript, and no superscript, namely, [ L ]g. Moreover, we will use,
henceforth, the concept of basis and coordinate frame interchangeably, since one
implies the other.

Two different bases are unavoidable when the two spaces under study are
physically distinct, which is the case in velocity analysis of manipulators. As
we will see in Chapter 4, in these analyses we distinguish between the velocity
of the manipulator in Cartesian space and that in the joint-rate space. While
the Cartesian-space velocity—or Cartesian velocity, for brevity——consists, in
general, of a 6-dimensional vector containing the 3-dimensional angular velocity
of the end-effector and the translational velocity of one of its points, the latter
is an n-dimensional vector. Moreover, if the manipulator is coupled by revolute
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joints only, the units of the joint-rate vector are all s™1, whereas the Cartesian
VQIO(;ity contains some components with units of s~! and others with units of
ms™'.
Further definitions are now recalled. Given a mapping L of an n-dimensional
vector space U into the n-dimensional vector space V, a nonzero vector e that
is mapped by L into a multiple of itself, Ae, is called an eigenvector of L, the
scalar X being called an eigenvalue of L. The eigenvalues of L are determined
by the equation

det(A1-L) =0 (2.11)

Note that the matrix A1 — L is linear in ), and since the determinant of a n xn
matrix is a homogeneous nth-order function of its entries, the left-hand side of
eq.(2.11) is a nth-degree polynomial in A. The foregoing polynomial is termed
the characteristic polynomial of L. Hence, every n X n matrix L has n complex
eigenvalues, even if L is defined over the real field. If it is, then its complex
eigenvalues appear in conjugate pairs. Clearly, the eigenvalues of L are the
roots of its characteristic polynomial, while eq.(2.11) is called the characteristic
equation of L.

Example 2.2.1 What is the representation of the reflection R of £ into itself,
with respect to the z-y plane, in terms of unit vectors parallel to the X, Y, Z
azes that form a coordinate frame F?

Solution: Note that in this case, U = V = £3 and, hence, it is not necessary to
use two different bases for ¢ and V. Now, let i, j, k, be unit vectors parallel to
the X, ¥, and Z axes. Clearly,

Ri=i
Rj=]
Rk = -k

Thus, the representations of the images of i, j and k under R, in F, are

1 0 0
[Ril=|0|, [Rjlr=]|1]|, [Rk]r=]0
0 0 -1

where subscripted brackets are used to indicate the representation frame. Hence,
the matrix representation of R in F, denoted by [R ], is

10 0
[Rlz={0 1 0
00 -1

2.3 Rigid-Body Rotations

A linear isomorphism, i.e., a one-to-one linear transformation mapping a space
V onto itself, is called an isometry if it preserves distances between any two
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points of V. If u and v are regarded as the position vectors of two such points,
then the distance d between these two points is defined as

d=/(u-v)T(u-v) (2.12)

The volume V of the tetrahedron defined by the origin and three points of
the 3-dimensional Euclidean space of position vectors u, v, and w is obtained
as one-sixth of the absolute value of the double mized product of these three
vectors,

1 1
Egluxv-w|=6|det[u v o w]| (2.13)

i.e., if a 3x3 array [A] is defined in terms of the components of u, v, and w, in
a given basis, then the first column of [A] is given by the three components of
u, the second and third columns being defined likewise.

Now, let Q be an isometry mapping the triad {u, v, w} into {u’, v/, w'}.
Moreover, the distance from the origin to the points of position vectors u, v,
and w is given simply as ||lu, ||v||, and ||w]|, which are defined as

|[u]] = vVuTu, |v||=vvlv, |w|=vwTw (2.14)
Clearly,
'l = [lall, [Vl =lvll, [w=Iw] (2.15a)
and
det[u' v w]==xdet[u v w] (2.15Db)

If, in the foregoing relations, the sign of the determinant is preserved, the
isometry represents a rotaotion; otherwise, it represents a reflection. Now, let p
be the position vector of any point of £3, its image under a rotation Q being
p'. Hence, distance preservation requires that

p’p=p"p (2.16)
where
p' =Qp (2.17)
condition (2.16) thus leading to
QTQ =1 (2.18)

where 1 was defined in Section 2.2 as the 3 x 3 identity matriz, and hence,
eq.(2.18) states that Q is an orthogonal matriz. Moreover, let T and T’ denote
the two matrices defined below:

T=[u v w], T'=[v v w] (2.19)

from which it is clear that
T = QT (2.20)
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Now, for a rigid-body rotation, eq.(2.15b) should hold with the positive sign,
and hence,
det(T) = det(T’) (2.21a)

and, by virtue of eq.(2.20), we conclude that
det(Q) = +1 (2.21b)

Therefore, Q is a proper orthogonal matriz, i.e., it is a proper isometry. Now
we have

Theorem 2.3.1 The eigenvalues of a proper orthogonal matriz Q lie on the
unit circle centered at the origin of the complex plane.

Proof: Let X be one of the eigenvalues of Q and e the corresponding eigenvector,
so that

Qe = Xe (2.22)

In general, Q is not expected to be symmetric, and hence, A is not necessarily
real. Thus, X is considered complex, in general. In this light, when transposing
both sides of the foregoing equation, we will need to take the complex conjugates
as well. Henceforth, the complex conjugate of a vector or a matrix will be
indicated with an asterisk as a superscript. As well, the conjugate of a complex
variable will be indicated with a bar over the said variable. Thus, the transpose
conjugate of the above equation takes on the form

e*Q* = de* (2.23)
Multiplying the corresponding sides of the two previous equations yields
e*Q*Qe = Xe*e (2.24)

However, Q has been assumed real, and hence, Q* reduces to Q7 , the foregoing
equation thus reducing to

e*Q7Qe = Xe*e (2.25)

But Q is orthogonal by assumption, and hence, it obeys eq.(2.18), which means
that eq.(2.25) reduces to

e*e = |\|°e*e (2.26)
where | - | denotes the module of the complex variable within it. Thus, the
foregoing equation leads to

A2 =1 (2.27)

thereby completing the intended proof. As a direct consequence of Theo-
rem 2.3.1, we have

Corollary 2.3.1 A proper orthogonal 3 X 3 metrixz has at least one eigenvalue
that is +1.
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Now, let e be the eigenvector of Q associated with the eigenvalue +1. Thus,
Qe=¢e (2.28)
What eq.(2.28) states is summarized as a theorem below:

Theorem 2.3.2 (Euler, 1776) A rigid-body motion ebout a point O leaves
fized a set of points lying on a line L that passes through O and is parallel to
the eigenvector e of Q associated with the eigenvalue +1.

A further result, that finds many applications in robotics and, in general, in
system theory, is given below:

Theorem 2.3.3 (Cayley-Hamilton) Let P()\) be the characteristic polyno-
mial of a n X n matriz A, i.e.,

P(A) =det(A\1 —A) = A"+ a, 1 A"V + -+ ar X +ag (2.29)
Then A satisfies its characteristic equation, i.e.,
A"+ a, A" 4+t a1A +agl =0 (2.30)
where O is the n x n zero matriz.

Proof: See (Kaye and Wilson, 1998).

What the Cayley-Hamilton Theorem states is that any power p > n of the
n X n matrix A can be expressed as a linear combination of the first n powers of
A—the Oth power of A is, of course, the n x n identity matrix 1. An important
consequence of this result is that any analytic matrix function of A can be
expressed not as an infinite series, but as a sum, namely, a linear combination
of the first n powers of A: 1, A, ..., A"}, An analytic function f(z) of a real
variable z is, in turn, a function with a series expansion. Moreover, an analytic
matrix function of a matrix argument A is defined likewise, an example of which
is the exponential function. From the previous discussion, then, the exponential
of A can be written as a linear combination of the first n powers of A. It will
be shown later that any proper orthogonal matrix Q can be represented as the
exponential of a skew-symmetric matrix derived from the unit vector e of Q, of
eigenvalue +1, and the associated angle of rotation, as yet to be defined.

2.3.1 The Cross-Product Matrix

Prior to introducing the matrix representation of a rotation, we will need a few
definitions. We will start by defining the partial derivative of a vector with
respect to another vector. This is a matrix, as described below: In general, let
u and v be vectors of spaces U and V, of dimensions m and n, respectively.
Furthermore, let ¢t be a real variable and f be real-valued function of ¢, u = u(t)
and v = v(u(t)) being m- and n-dimensional vector functions of ¢ as well, with
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f = f(u,v). The derivative of u with respect to t, denoted by u(t), is a m-
dimensional vector whose ith component is the derivative of the ith component
u; of u, in a given basis, with respect to t. A similar definition follows for
v(t). The partial derivative of f with respect to u is a m-dimensional vector
whose ith component is the partial derivative of f with respect to u;, with a
corresponding definition for the partial derivative of f with respect to v. The
foregoing derivatives, as all other vectors, will be assumed, henceforth, to be
column arrays. Thus,

af [ow 8f [ov
af _ | 0f/0us of _ | 0f/ov
Of [Oum df /vn,

Furthermore, the partial derivative of v with respect to u is a n x m array
whose (4, j) entry is defined as dv;/du;, i.e.,

81)1 /6U1 3’01/8’&2 L 81}1/6um
QY_ _ ng(aul 6v2/.8uz . am/-aum (2.52)
Su : : . .
O fO0uy B, [Ous -+ Ovu,[Oup,
Hence, the total derivative of f with respect to u can be written as
o _or, (3w Of
du = du (au) v (2:33)

If, moreover, f is an explicit function of ¢, i.e., if f = f(u,v,¢) and v =
v(u,t), then, one can write the total derivative of f with respect to t as

T T T
ﬁ=?_f+ Qi d_u+ _a_f_ QX+ Qi ?Xi‘_l_ (2.34)
dt Ot Ou dt ov ot ov/) Oudt

The total derivative of v with respect to ¢ can be written, likewise, as

dv 9v dvdu

B A Al st 2.35

&~ ot Teud (2.35)
Example 2.3.1 Let the components of v and x in a certain reference frame F
be given as

V1 1
[viF=|v2|, [x]r= |2 (2.36a)
V3 z3

Then
VoZ3 — V3X2
[V X X]]: = | V31 —V1x3 (236b)

N Ty — V21
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Hence,

% U3 0 - (2.36¢)

[vaﬂ] R
F —uy v 0

Henceforth, the partial derivative of v x x with respect to x will be denoted
by the 3 x 3 matrix V. For obvious reasons, V is termed the cross-product matriz
of vector v. Sometimes the cross-product matrix of a vector v is represented
as v, but we do not follow this notation for the sake of consistency, since we
decided at the outset to represent matrices with boldface uppercases. Thus, the
foregoing cross product admits the alternative representations

vxx=Vx (2.37)
Now, it should be apparent that:

Theorem 2.3.4 The cross-product matriz A of any 3-dimensional vector a is
skew-symmetric, i.e.,
AT =_A

and, as a consequence,
ax (axb)=A% (2.38)

where A2 can be readily proven to be
A? = —[a]|’1 + aa” (2.39)
with || - || denoting the Euclidean norm of the vector inside it.

Note that given any 3-dimensional vector a, its cross-product matrix A is
uniquely defined. Moreover, this matrix is skew-symmetric. The converse also
holds, i.e., given any 3 x 3 skew-symmetric matrix A, its associated vector is
uniquely defined as well. This result is made apparent from Example 2.3.1 and
will be discussed further when we define the axial vector of an arbitrary 3 x 3
matrix below.

2.3.2 The Rotation Matrix

In deriving the matrix representation of a rotation, we should recall Theo-
rem 2.3.2, which suggests that an explicit representation of Q in terms of its
eigenvector e is possible. Moreover, this representation must contain informa-
tion on the amount of the rotation under study, which is nothing but the angle
of rotation. Furthermore, line £, mentioned in Euler’s Theorem, is termed the
axis of rotation of the motion of interest. In order to derive the representation
mentioned above, consider the rotation depicted in Fig. 2.3 of angle ¢ about
line L.
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(b)

Figure 2.3: Rotation of a rigid body about a line

From Fig. 2.3(a), one can apparently write

|
p' =0Q + QP'
eq.(2.6a), namely,

(2.40)
Furthermore, from Fig. 2.3(b),

—

where O(Q) is the axial component of p along vector e, which is derived as in
—

0Q=ee’p

(2.41)
— —_
QP'= (cosp) QP +(sing) QP"
introduced in eq.(2.6b), i.e

(2.42)

with QP being nothing but the normal component of p with respect to e, as
? " "7

—

and QP" given as

QP=(1-ee")p

(2.43)
QP'=exp=Ep
Substitution of eqs.(2.43) and (2.44) into eq.(2.42) leads to

(2.44)
—
QP' = cos p(1 — eeT)p + sin gEp
If now eqs.(2.41) and (2.45) are substituted into eq.(2.40), one obtains

(2.45)
p’' = ee”p + cos ¢(1 — ee”)p + sin JEp

(2.46)
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Thus, eq.(2.40) reduces to
p' = [eeT + cos #(1 — ee”) + sin ¢E]p (2.47)

From eq.(2.47) it is apparent that p’ is a linear transformation of p, the
transformation being given by the expression inside the brackets, which is the
rotation matrix Q sought, i.e.,

Q = ee” + cosp(1 — eeT) + sin ¢E (2.48)
A special case arises when ¢ = T,
Q=-1+2e", for¢g=n (2.49)

whence it is apparent that Q is symmetric if ¢ = w. Of course, Q becomes
symmetric also when ¢ = 0, but this is a rather obvious case, leading to Q = 1.
Except for these two cases, the rotation matrix is not symmetric. However,
under no circumstance does the rotation matrix become skew-symmetric, for
a 3 x 3 skew-symmetric matrix is by necessity singular, which contradicts the
property of proper orthogonal matrices of eq.(2.21b).

Now one more representation of Q in terms of e and ¢ is given. For a fixed
axis of rotation, i.e., for a fixed value of e, the rotation matrix Q is a function
of the angle of rotation ¢, only. Thus, the series expansion of Q in terms of ¢ is

Q) = Q) + QO + 5, Q O+ + QRO+ (2.50)

where the superscript (k) stands for the kth derivative of Q with respect to ¢.
Now, from the definition of E, one can readily prove the relations below:

E®HD = (—1)FE, E? = (—1)%(1 — ee”) (2.51)
Furthermore, using egs.(2.48) and (2.51), one can readily show that
Q¥ (0) = EF (2.52)

with E defined already as the cross-product matrix of e. Moreover, from
eqs.(2.50) and (2.52), Q(¢) can be expressed as

1 1
Q(¢) =14+ E¢ + §E2¢2+."+EEk¢k+"'
whose right-hand side is nothing but the exponential of E¢, i.e.,

Q(¢) = €™ (2.53)

Equation (2.53) is the exponential representation of the rotation matrix in terms
of its natural invariants, e and ¢. The foregoing parameters are termed invari-
ants because they are independent of the coordinate axes chosen to represent
the rotation under study. The adjective natural is necessary to distinguish them
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from other invariants that will be introduced presently. This adjective seems
suitable because the said invariants stem naturally from Euler’s Theorem.
Now, in view of eqs.(2.51), the above series can be written as
1
(2k)!

(_1)k¢2k+1 + .- :I E

Q(¢) =1+ [—21!¢2+4l!¢4~-~+ (——1)’“¢2’“+~--] (1—ee”)

1
+[¢“3‘z¢3+"'+<§m

The series inside the first pair of brackets is apparently cos ¢ — 1, while that in
the second pair is sin ¢. We have, therefore, an alternative representation of Q:

Q=1+singE + (1 — cos qS)E2 (2.54)

which is an expected result in view of the Cayley-Hamilton Theorem.

The Canonical Forms of the Rotation Matrix

The rotation matrix takes on an especially simple form if the axis of rotation
coincides with one of the coordinate axes. For example, if the X axis is parallel
to the axis of rotation, i.e., parallel to vector e, in a frame that we will label X,
then, we will have

1 00 0 0 0 0
[elx=]0|, [ElJx=|0 0 -1|, [E*lx=|0 -1 0
0 01 0 0 0 -1

In the X-frame, then,
1 0 0
[Qlx=|0 cos¢ —sing (2.55a)
0 sing cos¢

Likewise, if we define the coordinate frames ) and Z so that their Y and Z
axes, respectively, coincide with the axis of rotation, then

[ cos¢ 0 sing]

[Qly = 0 1 0 (2.55b)
| —sing 0 cos¢ |
and ) _
cos¢p —sing 0
[Qlz = |sing cosgp O (2.55¢)
0 0 1

The representations of egs.(2.55a—c) can be called the X-, Y-, and Z-canonical
forms of the rotation matrix. In many instances, a rotation matrix cannot be
derived directly from information on the original and the final orientations of a
rigid body, but the overall motion can be readily decomposed into a sequence of
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simple rotations taking the above canonical forms. An application of canonical
forms lies in the parameterization of rotations by means of Fuler angles, con-
sisting of three successive rotations, ¢, 8 and 9, about one axis of a coordinate
frame. Euler angles are introduced in Exercise 18, and applications thereof are
given in Exercises 2.36, 2.37, 3.1.9, and 3.1.10.

2.3.3 The Linear Invariants of a 3 x 3 Matrix

Now we introduce two linear invariants of 3 x 3 matrices. Given any 3 x 3 matrix
A, its Cartesian decomposition, the counterpart of the Cartesian representation
of complex numbers, consists of the sum of its symmetric part, Ag, and its
skew-symmetric part, Agg, defined as

1 1
As=_(A+ AT), Ags= S(A- AT) (2.56)
The axial vector or for brevity, the vector of A, is the vector a with the property
axv=Aggv (2.57)

for any 3-dimensional vector v. The trace of A is the sum of the eigenvalues
of Ag, which are real. Since no coordinate frame is involved in the above
definitions, these are invariant. When calculating these invariants, of course, a
particular coordinate frame must be used. Let us assume that the entries of
matrix A in a certain coordinate frame are given by the array of real numbers
ai;, for 4,7 =1,2,3. Moreover, let a have components a;, for ¢ = 1,2,3, in the
same frame. The above-defined invariants are thus calculated as

1 agz — Q23
vect(A)=a= 5 |as—as |, tr(A) = ay1 + azz + ass (2.58)
a1 — a2

From the foregoing definitions, we have now

Theorem 2.3.5 The vector of a 3 X 3 matriz vanishes if and only if it is sym-
metric, whereas the trace of an n x n matriz vanishes if the matriz is skew
symmetric.

Other useful relations are given below. For any 3-dimensional vectors a and
b,

vect(abT) = ——;—a «b (2.59)
and
tr(abT) = a’b (2.60)

The second relation is quite straightforward, but the first one is less so; a proof
of the first relation follows: Let w denote vect(ab”). From Definition (2.57),
for any 3-dimensional vector v,

wxv=Wv (2.61)
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where W is the skew-symmetric component of ab”, namely,
W = %(abT — ba”) (2.62)

and hence,
Wyv=wxv= —;—[(bTv)a — (aTv)b] (2.63)

Now, let us compare the last expression with the double cross product (bxa)x v,
namely,
(b xa) xv=(bTv)a—(aTv)b (2.64)

from which it becomes apparent that
1
w= ib X a (2.65)

thereby proving the aforementioned relation.

Note that Theorem 2.3.5 states a necessary and sufficient condition for the
vanishing of the vector of a 3 x 3 matrix, but only a sufficient condition for the
vanishing of the trace of a n x n matrix. What this implies is that the trace of a
n X n matrix can vanish without the matrix being necessarily skew symmetric,
but the trace of a skew-symmetric matrix necessarily vanishes. Also note that
whereas the vector of a matrix is defined only for 3 x 3 matrices, the trace can
be defined more generally for n x n matrices.

In some applications, the cross-product matrix of the product Ab of a 3 x 3
matrix A by a vector b is needed:

CPM(Ab) = (BA)T —BA +tr(A)B = [tr(A)1 - AT|B-BA  (2.66)

where B = CPM(b). The proof is left as an exercise.

2.3.4 The Linear Invariants of a Rotation

From the invariant representations of the rotation matrix, egs.(2.48) and (2.54),
it is clear that the first two terms of Q, ee” and cos #(1 — ee” ), are symmetric,
whereas the third one, sin ¢E, is skew-symmetric. Hence,

vect(Q) = vect(sind E) =singe (2.67)
whereas
tr(Q) = tr[ee” + cos p(1 — eeT)] = eTe 4 cos (3 —eTe) =14+ 2cosp (2.68)
from which one can readily solve for cos ¢, namely,

cos¢ = tr_(Qz)_—_l (2.69)

1This relation was derived by Ph.D. candidate Philippe Cardou.
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Henceforth, the vector of Q will be denoted by q and its components in a
given coordinate frame by ¢1, g2, and ¢3. Moreover, rather than using tr(Q) as
the other linear invariant, gg = cos¢ will be introduced to refer to the linear
invarionts of the rotation matriz. Hence, the rotation matrix is fully defined by
four scalar parameters, namely {g;}§, which will be conveniently stored in the
4-dimensional array A, defined as

A= [qI’ g2, g3, qO]T (270)

Note, however, that the four components of A are not independent, for they
obey the relation
llal|? + g2 =sin®¢ +cos? ¢ =1 (2.71)

Thus, eq.(2.71) can be written in a more compact form as
NP =at +¢ + 65 +a5 =1 (2.72)

What eq.(2.71) states has a straightforward geometric interpretation: As a
body rotates about a fixed point, its motion can be described in a 4-dimensional
space by the motion of a point of position vector A that moves on the surface
of the unit sphere centered at the origin of the said space. Alternatively, one
can conclude that, as a rigid body rotates about a fixed point, its motion can
be described in a 3-dimensional space by the motion of position vector q, which
moves within the unit solid sphere centered at the origin of the said space. Given
the dependence of the four components of vector A, one might be tempted to
solve for, say, go from eq.(2.71) in terms of the remaining components, namely,
as

qo—d:\/l—(ql +6 +¢) (2.73)

This, however, is not a good idea because the sign ambiguity of eq.(2.73)
leaves angle ¢ undefined, for q¢ is nothing but cos ¢. Moreover, the three com-
ponents of vector q alone, i.e., singe, do not suffice to define the rotation
represented by Q. Indeed, from the definition of q, one has

sing = +[lql|, e=aq/sin¢ (2.74)

from which it is clear that q alone does not suffice to define the rotation under
study, since it leaves angle ¢ undefined. Indeed, the vector of the rotation matrix
provides no information about cos ¢. Yet another representation of the rotation
matrix is displayed below, in terms of its linear invariants, that is readily derived
from representations (2.48) and (2.54), namely,

T
aQqa qq9
Q= + 1-— ) + 2.75a

Hfl”2 o ( l|all? Q ( )

in which Q is the cross-product matrix of vector q, i.e.,

d(q x x)

Q= ox
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for any vector x.
Note that by virtue of eq.(2.71), the representation of Q given in eq.(2.75a)
can be expressed alternatively as

aq”

1+qo

Q=ql+Q+ (2.75b)
From either eq.(2.75a) or eq.(2.75b) it is apparent that linear invariants are
not suitable to represent a rotation when the associated angle is either 7 or
close to it. Note that a rotation through an angle ¢ about an axis given by
vector e is identical to a rotation through an angle —¢ about an axis given by
vector —e. Hence, changing the sign of e does not change the rotation matrix,
provided that the sign of ¢ is also changed. Henceforth, we will choose the sign
of the components of e so that sin ¢ > 0, which is equivalent to assuming that
0 < ¢ < 7. Thus, sin ¢ is calculated as ||q|, while cos ¢ as indicated in eq.(2.69).
Obviously, e is simply q normalized, i.e., ¢ divided by its Euclidean norm.

2.3.5 Examples

The examples below are meant to stress the foregoing ideas on rotation invari-
ants.

Example 2.3.2 If [e]r = [V/3/3, —v/3/3, V/3/3]T in a given coordinate frame
F and ¢ = 120°, what is Q in F?

Solution: From the data,
1
COS¢:—§, Sin¢=—2—3

Moreover, in the F frame,

([t (1 -1 1
[eeT]fzg -1|[1 -1 1]:g -1 1 -1
1 1 -1 1
and hence,
2 1 -1 0 -1 -1
[1—eeT]f=% 1 2 1], [E]fz? 1 0 -1
-1 1 1 1 0
Thus, from eq.(2.48),
(1 -1 o1 2 1 -1 5[0 -1 -1
QF=z|-1 1 —1j-z1 2 1|+211 0 -1
1 -1 1 -1 1 2 1 1 0
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0 -1 0
Qlr = [0 0 -—1}
1 0 0

i.e.,

Example 2.3.3 The matriz representation of a linear transformation Q in a
certain reference frame F is given below. Find out whether the said transfor-
mation is a rigid-body rotation. If it is, find its natural invariants.

010
[Qlr=|0 0 1
1 00

Solution: First the given array is tested for orthogonality:

01 0 0 0 1 1 00
[Q]F[QT]x=|0 0 1| |1 0 0f=]0 1 0
1 00 010 0 0 1

thereby showing that the said array is indeed orthogonal. Thus, the linear
transformation could represent a reflection or a rotation. In order to decide
which one this represents, the determinant of the foregoing array is computed:

det(Q) = +1

which makes apparent that Q indeed represents a rigid-body rotation. Now,
its natural invariants are computed. The unit vector e can be computed as the
eigenvector of Q associated with the eigenvalue +1. This requires, however,
finding a nontrivial solution of a homogeneous linear system of three equations
in three unknowns. This is not difficult to do, but it is cumbersome and is not
necessary. In order to find e and ¢, it is recalled that vect(Q) = sin ¢ e, which
is readily computed with differences only, as indicated in eq.(2.58), namely,

1 1
[alr =single]r = -5 11
1
Under the assumption that sin ¢ > 0, then,
: V3
sing = laf| = >
and hence,
1
le]r = lr __v3|,
llall 3 1
and

¢=60° or 120°
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The foregoing ambiguity is resolved by the trace of Q, which yields
1+2cosp=tr(Q) =0, cos¢= —%
The negative sign of cos ¢ indicates that ¢ lies in the second quadrant—it cannot

lie in the third quadrant because of our assumption about the sign of sin ¢—and
hence

¢ = 120°

Example 2.3.4 A coordinate frame X1, Y1, Z1 is rotated into a configuration
X, Yy, Zy in such a woy that

Xo==-Y1, Yo=2, Zr=-X

Find the matriz representation of the rotation in X1, Y1, Z1 coordinates. From
this representation, compute the direction of the axis and the angle of rotation.

Solution: Let iy, j1, k1 be unit vectors parallel to X, Y1,Z;, respectively,
i2, j2, ko being defined correspondingly. One has

ib=—j1, jo=ki, ko= -i

and hence, from Definition 2.2.1, the matrix representation [ Q]; of the rotation
under study in the X, Y3, Z; coordinate frame is readily derived:

from which the linear invariants follow, namely,

1| ! 1 1
[q)1 = [vect(Q)]1 =sing[e]; = 3 —i , Cos¢= i[tl‘(Q) -1]= )

Under our assumption that sin ¢ > 0, we obtain

1
3 3
sing = ol = %, [l = [0 = 43 .

From the foregoing values for sin ¢ and cos ¢, angle ¢ is computed uniquely as
¢ =120°

Example 2.3.5 Show that the matriz P given in eq.(2.4) satisfies properties
(2.1a).
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Solution: First, we prove idempotency, i.e.,

P?2=(1-nn")(1 — nn7)
=1-2nn” +on"nn” =1 -nn” =P

thereby showing that P is, indeed, idempotent. Now we prove that n is an
eigenvector of P with eigenvalue, 0 and hence, n spans the nullspace of P. In
fact,

Pn=(1-on")n=n-nn"n=n-n=0

thereby completing the proof.

Example 2.3.6 The representations of three linear transformations in a given
coordinate frame F are given below:

1 [ 2 1 2]
[A];:E -2 2 1
[-1 -2 2]

i 2 1 1]

|1 -1 2

1 [1 2 2]

(2 -2 1 |

One of the foregoing matrices is an orthogonal projection, one is a reflection,
and one is a rotation. Identify each of these and give its invariants.

Solution: From representations (2.48) and (2.54), it is clear that a rotation
matrix is symmetric if and only if sin ¢ = 0. This means that a rotation matrix
cannot be symmetric unless its angle of rotation is either 0 or 7, i.e., unless its
trace is either 3 or —1. Since [B]s and [C]# are symmetric, they cannot be
rotations, unless their traces take on the foregoing values. Their traces are thus
evaluated below:

tr(B) =2, r(C)=1

which thus rules out the foregoing matrices as suitable candidates for rotations.
Thus, A is the only candidate left for proper orthogonality, its suitability being
tested below:

(]9 00
[AAT]fz§ 0 9 0|, det(A)=+1
009

and hence, A indeed represents a rotation. Its natural invariants are next
computed:

~1
sin ¢ [e] 7 = [vect(A)] 5 = % L] coso= —;—[tr(A) ~1]= %(2 —1)= %
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We assume, as usual, that sin¢ > 0. Then,

sin ¢ = ||vect(A)|| = ?, i.e., ¢ =60°
Moreover,
 [vect(A)F V3 |
el = eaa) = 3 |,

Now, one matrix of B and C is an orthogonal projection and the other is a
reflection. To be a reflection, a matrix has to be orthogonal. Hence, each
matrix is tested for orthogonality:

116 3 3 119 00
[BBT]»=5|3 6 -3|=[B’lr=[B]s [CCT]z=5|0 9 0
3 -3 6 009

thereby showing that C is orthogonal and B is not. Furthermore, det(C) = —1,
which confirms that C is a reflection. Now, if B is a projection, it is bound to
be singular and idempotent. From the orthogonality test it is clear that it is
idempotent. Moreover, one can readily verify that det(B) = 0, and hence B is
singular, the unit vector [n]z = [n1, n2, n3]7 that spans its nullspace being
determined from the general form of projections, eq.(2.1a), whence,

nmT=1-8

Therefore, if a solution n has been found, then —n is also a solution, i.e., the
problem admits two solutions, one being the negative of the other. These two
solutions are found below, by first rewriting the above system of equations in
component form:

nf ning nNiNng 1 1 -1 -1
nnme N nana| =< |-1 1 1
Ning nNans ng -1 1 1

Now, from the diagonal entries of the above matrices, it is apparent that the
three components of n have identical absolute values, i.e., v/3/3. Moreover, from
the off-diagonal entries of the same matrices, the second and third components
of n bear equal signs, but we cannot tell whether positive or negative, because
of the quadratic nature of the problem at hand. The two solutions are thus
obtained as

which is the only invariant of B.
We now look at C, which is a reflection, and hence, bears the form

C=1-2nmm7
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In order to determine n, note that
r 1
nn' = 5(1 - C)

or in component form,

n?  nng ning 1 -1 -1
nng ni menz|==-|-1 1 1
nin3 nang TL% -1 1 1

which is identical to the matrix equation derived in the case of matrix B. Hence,
the solution is the same, i.e.,

1
n= :!:ﬁ -1
31

thereby finding the invariant sought.

Example 2.3.7 The vector and the trace of a rotation matriz Q, in a certain
reference frame F, are given as

~1

[vect(@)) = L w@=

Find the matriz representation of Q in the given coordinate frame and in a
frame having its Z-axzis parallel to vect(Q).

Solution: We shall resort to eq.(2.75a) to determine the rotation matrix Q. The
quantities involved in the representation of Q in F are readily computed:

1 -1 1 0 1

1 3 — 1
[qu]]: =- -1 1 -1 ) Hq||2 = [Q]f =5
4 4 2
1 -1 1
from which Q follows:

2 1 2
-2 2 1
-1 -2 2

(Qlr =

in the given coordinate frame. Now, let Z denote a coordinate frame whose
Z-axis is parallel to q. Hence,

3 [0 40 00 B J3[0 -1 0
[alz=-]0], [qu]z=Z 00 0f, [Qlz=-3{1 0 0
1 00 1 0 0 0
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which readily leads to

1/2 —/3/2 0
- Ve 9
0 0 1

and is in the Z-canonical form.

Example 2.3.8 A procedure for trajectory planning produced a matriz repre-
senting a rotation for a certain pick-and-place operation, as shown below:

0433 —0.500 =z
[Q]=| = 0866 —0.433
0866 0.500

where z, y, and z are entries that are unrecognizable due to failures in the
printing hardware. Knowing that Q is in fact o rotation matriz, find the missing
entries.

Solution: Since Q is a rotation matrix, the product P = Q7 Q should equal
the 3 x 3 identity matrix, and det(Q) should be +1. The foregoing product is
computed first:

0.437+ 22 0.433(z —~z~1) 0.5(—~y+2)+0.375
[Plr = * 0.937 + 22 0.866(z + y) — 0.216
* * 1+ y2

where the entries below the diagonal need not be printed because the matrix is
symmetric. Upon equating the diagonal entries of the foregoing array to unity,
we obtain

z==+0250, y=0, z==0.750

while the vanishing of the off-diagonal entries leads to
=0250, y=0, z=-0.750

which can be readily verified to produce det(Q) = +1.

2.3.6 The Euler-Rodrigues Parameters

The invariants defined so far, namely, the natural and the linear invariants of a
rotation matrix, are not the only ones that are used in kinematics. Additionally,
one has the Fuler parameters, or Fuler-Rodrigues parameters, as Cheng and
Gupta (1989) propose that they should be called, represented here as r and ro.
The Euler-Rodrigues parameters are defined as

r = sin (—g) e, T =Co08 (g) (2.76)
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One can readily show that Q takes on a quite simple form in terms of the
Fuler-Rodrigues parameters, namely,

Q= (ro®> —~r-1r)1 +2rr” + 2R (2.77)
in which R is the cross-product matrix of r, i.e.,

O(r x x)

R = %

for arbitrary x.

Note that the Euler-Rodrigues parameters appear quadratically in the ro-
tation matrix. Hence, these parameters cannot be computed with simple sums
and differences. A closer inspection of eq.(2.75b) reveals that the linear invari-
ants appear almost linearly in the rotation matrix. This means that the rotation
matrix, as given by eq.(2.75b), is composed of two types of terms, namely, linear
and rational. Moreover, the rational term is composed of a quadratic expres-
sion in the numerator and a linear expression in the denominator, the ratio thus
being linear, which explains why the linear invariants can be obtained by sums
and differences from the rotation matrix.

The relationship between the linear invariants and the Euler-Rodrigues pa-
rameters can be readily derived, namely,

114+ q q
= _— _ 2'
ro = =% 5 o T org’ p#T (2.78)

Furthermore, note that, if ¢ = =, then rg = 0, and formulae (2.78) fail to
produce r. However, from eq.(2.76),

Forog=n: r=e, ro=0 (2.79)

We now derive invariant relations between the rotation matrix and the Euler-
Rodrigues parameters. To do this, we resort to the concept of matriz square
root. As a matter of fact, the square root of a square matrix is nothing but a
particular case of an analytic function of a square matrix, discussed in connection
with Theorem 2.3.3 and the exponential representation of the rotation matrix.
Indeed, the square root of a square matrix is an analytic function of that matrix,
and hence, admits a series expansion in powers of the matrix. Moreover, by
virtue of the Cayley-Hamilton Theorem (Theorem 2.3.3) the said square root
should be, for a 3 x 3 matrix, a linear combination of the identity matrix 1, the
matrix itself, and its square, the coefficients being found using the eigenvalues
of the matrix.

Furthermore, from the geometric meaning of a rotation through the angle
¢ about an axis parallel to the unit vector e, it is apparent that the square
of the matrix representing the foregoing rotation is itself a rotation about the
same axis, but through the angle 2¢. By the same token, the square root of
the rotation matrix is again a rotation matrix about the same axis, but through
an angle ¢/2. Now, while the square of a matrix is unique, its square root is
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not. This fact is apparent for diagonalizable matrices, whose diagonal entries
are their eigenvalues. Each eigenvalue, whether positive or negative, admits
two square roots, and hence, a diagonalizable n X n matrix admits as many
square roots as there are combinations of the two possible roots of individual
eigenvalues, disregarding rearrangements of the latter. Such a number is 27,
and hence, a 3 x 3 matrix admits eight square roots. For example, the eight
square roots of the identity 3 x 3 matrix are displayed below:

100 10 0 1 0 0 -1 00
010, |01 o], |0 -1 of, (0o 10/,
00 1 00 -1 0 0 1 0 01

1 0 0 10 0 -1 0 0 -1 0 0

0 -1 0/, o1 0], [0 -10], [0 -1 o0

0 0 -1 0 0 -1 0 0 1 0 0 -1

In fact, the foregoing result can be extended to orthogonal matrices as well
and, for that matter, to any square matrix with n linearly independent eigen-
vectors. That is, an n X n orthogonal matrix admits 2" square roots. However,
not all eight square roots of a 3 x 3 orthogonal matrix are orthogonal. In fact,
not all eight square roots of a 3 x 3 proper orthogonal matrix are proper or-
thogonal either. Of these square roots, nevertheless, there is one that is proper
orthogonal, the one representing a rotation of ¢/2. We will denote this partic-
ular square root of Q by +/Q. The Euler-Rodrigues parameters of Q can thus
be expressed as the linear invariants of /Q, namely,

r = vect(v/Q), 70 = t_r(l?)_—l_ (2.80)

It is important to recognize the basic differences between the linear invariants
and the Euler-Rodrigues parameters. Whereas the former can be readily derived
from the matrix representation of the rotation involved by simple additions
and subtractions, the latter require square roots and entail sign ambiguities.
However, the former fail to produce information on the axis of rotation whenever
the angle of rotation is 7, whereas the latter produce that information for any
value of the angle of rotation.

The Euler-Rodrigues parameters are nothing but the quaternions invented
by Sir William Rowan Hamilton (1844) in an extraordinary moment of creativity
on Monday, October 16, 1843, as “Hamilton, accompanied by Lady Hamilton,
was walking along the Royal Canal in Dublin towards the Royal Irish Academy,
where Hamilton was to preside a meeting.” (Altmann, 1989).

Moreover, the Euler-Rodrigues parameters should not be confused with the
Euler angles, which are not invariant and hence, admit multiple definitions. The
foregoing means that no single set of Euler angles exists for a given rotation
matrix, the said angles depending on how the rotation is decomposed into three
simpler rotations. For this reason, Euler angles will not be stressed here. The
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reader is referred to Exercise 2.18 for a short discussion of Euler angles; Synge
(1960) includes a classical treatment, while Kane, Likins and Levinson (1983)
provide an extensive discussion of the same.

Example 2.3.9 Find the Euler-Rodrigues parameters of the proper orthogonal
matriz Q given as

Q= 2 -1 2

Solution: Since the given matrix is symmetric, its angle of rotation is m and its
vector linear invariant vanishes, which prevents us from finding the direction of
the axis of rotation from the linear invariants; moreover, expressions (2.78) do
not apply. However, we can use eq.(2.49) to find the unit vector e parallel to
the axis of rotation, i.e.,

eel = %(1 +Q)

or in component form,

el elex eles 1 1 1

etea €3 ees|=-11 11
2 3

eje3 esez €3 1 1 1

A simple inspection of the components of the two sides of the above equation
reveals that all three components of e are identical and moreover, of the same
sign, but we cannot tell which sign this is. Therefore,

1
e::tﬁ 1
3

Moreover, from the symmetry of Q, we know that ¢ = 7, and hence,

1
r:esin(%)::&? i , r0:c0s<§):0

2.4 Composition of Reflections and Rotations

As pointed out in Section 2.2, reflections occur often accompanied by rotations.
The effect of this combination is that the rotation destroys the two properties of
pure reflections, symmetry and self-inversion, as defined in Section 2.2. Indeed,
let R be a pure reflection, taking on the form appearing in eq.(2.5), and Q
an arbitrary rotation, taking on the form of eq.(2.48). The product of these
two transformations, QR, denoted by T, is apparently neither symmetric nor
self-inverse, as the reader can readily verify. Likewise, the product of these two
transformations in the reverse order is neither symmetric nor self-inverse.
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As a consequence of the foregoing discussion, an improper orthogonal trans-
formation that is not symmetric can always be decomposed into the product
of a rotation and a pure reflection, the latter being symmetric and self-inverse.
Moreover, this decomposition can take on the form of any of the two possible
orderings of the rotation and the reflection. Note, however, that once the or-
der has been selected, the decomposition is not unique. Indeed, if we want to
decompose T in the above paragraph into the product QR, then we can freely
choose the unit normal n of the plane of reflection and write

R=1-2nn”
vector n then being found from
r 1
nn' = -(1-R)
2
Hence, the factor Q of that decomposition is obtained as
Q=TR!'=TR =T - 2(Tn)nT

where use has been made of the self-inverse property of R. Any other selection
of vector n will lead to a different decomposition of T.

Example 2.4.1 Join the palms of your two hands in the position adopted by
swimmers when preparing for plunging, while holding a sheet of paper between
them. The sheet defines a plane in each hand that we will call the hand plane,
its unit normal, poiniing outside of the hand, being called the hand normal
and represented as vectors ng and ny, for the right and left hand, respectively.
Moreover, let og and oy, denote unit vectors pointing in the direction of the
finger azes of each of the two hands. Thus, in the swimmer position described
above, n;, = —npg and oy, = or. Now, without moving your right hand, let
the left hand attain o position whereby the left-hand normal lies at right angles
with the right-hand normal, the palm pointing dounwards and the finger azes of
the two hands remaining parallel. Find the representation of the transformation
carrying the right hand to the final configuration of the left hand, in terms of
the unit vectors ng and og.

Solution: Let us regard the desired transformation T as the product of a rotation
Q by a pure reflection R, in the form T = QR. Thus, the transformation occurs
so that the reflection takes place first, then the rotation. The reflection is simply
that mapping the right hand into the left hand, and hence, the reflection plane
is simply the hand plane, i.e.,

R=1 ——2an£

Moreover, the left hand rotates from the swimmer position about an axis parallel
to the finger axes through an angle of 90° clockwise from your viewpoint, i.e.,
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in the positive direction of vector og. Hence, the form of the rotation involved
can be derived readily from eq.(2.48) and the above information, namely,

Q = ook +Or

where Op is the cross-product matrix of op. Hence, upon performing the
product QR,, we have

T = ogok + 205 — 2(or X ng)nk

which is the transformation sought.

2.5 Coordinate Transformations and Homoge-
neous Coordinates

Crucial to robotics is the unambiguous description of the geometric relations
among the various bodies in the environment surrounding a robot. These re-
lations are established by means of coordinate frames, or frames, for brevity,
attached to each rigid body in the scene, including the robot links. The origins
of these frames, moreover, are set at landmark points and orientations defined by
key geometric entities like lines and planes. For example, in Chapter 4 we attach
two frames to every moving link of a serial robot, with origin at a point on each
of the axis of the two joints coupling this link with its two neighbors. Moreover,
the Z-axis of each frame is defined, according to the Denavit-Hartenberg nota-
tion, introduced in that chapter, along each joint axis, while the X-axis of the
frame closer to the base—termed the fore frame—is defined along the common
perpendicular to the two joint axes. The origin of the same frame is thus defined
as the intersection of the fore axis with the common perpendicular to the two
axes. This section is devoted to the study of the coordinate transformations of
vectors when these are represented in various frames.

2.5.1 Coordinate Transformations Between Frames
with a Common Origin

We will refer to two coordinate frames in this section, namely, A = {X, Y, Z}
and B = {X, Y, Z}. Moreover, let Q be the rotation carrying A4 into B, i.e.,

Q: 4 - B (2.81)
The purpose of this subsection is to establish the relation between the represen-

tations of the position vector of a point P in 4 and in B, denoted by [p]4 and
[p]ls, respectively. Let

[pla= |y (2.82)
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We want to find [p]g in terms of [p]4 and Q, when the latter is represented
in either frame. The coordinate transformation can best be understood if we
regard point P as attached to frame A, as if it were a point of a box with sides
of lengths z, y, and 2z, as indicated in Fig. 2.4(a). Now, frame A undergoes a
rotation Q about its origin that carries it into a new attitude, that of frame
B, as illustrated in Fig. 2.4(b). Point P in its rotated position is labeled II, of
position vector 7, i.e.,

T =Qp (2.83)

It is apparent that the relative position of point P with respect to its box does
not change under the foregoing rotation, and hence,

[*ls= |y (2.84)

Moreover, let

e
(mla=|n (2.85)
¢

Lo Jd

The relation between the two representations of the position vector of any point
of the 3-dimensional Euclidean space is given by

Theorem 2.5.1 The representations of the position vector m of any point in
two frames A and B, denoted by [w) 4 and [ 7], respectively, are related by

[7la=[Qlal7]s (2.86)

Proof: Let us write eq.(2.83) in A:

[7)a=[Qlalp]a (2.87)
Now, from Fig. 2.4(b) and eqs.(2.82) and (2.84) it is apparent that
(7] =[p]a (2.88)
Upon substituting eq.(2.88) into eq.(2.87), we obtain
[7]a=[Qla[7]s (2.89)

q.e.d. Moreover, we have

Theorem 2.5.2 The representations of Q carrying A into B in these two
frames are identical, i.e.,

[Qla=[Qls (2.90)
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(a) (b)

Figure 2.4: Coordinate transformation: (a) coordinates of point P in the A-
frame; and (b) relative orientation of frame B with respect to A

Proof: Upon substitution of eq.(2.83) into eq.(2.86), we obtain

[Qpla=[Ql4[QpP]s

[Qlalpla =[Q]a[Qp]5

Now, since Q is orthogonal, it is nonsingular, and hence, [ Q] can be deleted
from the foregoing equation, thus leading to

(pla=[Qlslpls (2.91)

However, by virtue of Theorem 2.5.1, the two representations of p observe the
relation

[Pla=[Qlalpls (2.92)
the theorem being proved upon equating the right-hand sides of eqgs.(2.91) and
(2.92).

Note that the foregoing theorem states a relation valid only for the conditions
stated therein. The reader should not conclude from this result that rotation

matrices have the same representations in every frame. This point is stressed
in Example 2.5.1. Furthermore, we have

Theorem 2.5.3 The inverse relation of Theorem 2.5.1 is given by

[7]s=[Q"s[7]a (2.93)

Proof: This is straightforward in light of the two foregoing theorems, and is left
to the reader as an exercise.
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A

A 0
X Tem——]
X

Figure 2.5: Coordinate frames A and B with a common origin

Example 2.5.1 Coordinate frames A and B are shown in Fig. 2.5. Find the
representations of Q rotating A into B in these two frames and show that they
are identical. Moreover, if [pla =[1, 1, 1]7, find [p]s.

Solution: Let i, j, and k be unit vectors in the directions of the X-, Y-, and
Z-axes, respectively; unit vectors ¢, v, and k are defined likewise as parallel to
the X-, V-, and Z-axes of Fig. 2.5. Therefore,

Qi=v=-k, Qj=v=-1, Qk=kr=]

Therefore, using Definition 2.2.1, the matrix representation of Q carrying A

into B, in A, is given by
0 -1 0
[Qla=]0 0 1
-1 0 0

Now, in order to find [Q]g, we apply Q to the three unit vectors of B, ¢, ¥,
and k. Thus, for ¢, we have

0 -1 0 0 0
Q=10 0 1 O |=|-1|=-j=~k
-1 0 0f]-1 0
Likewise,
Qv=—-t, Qr=7y

again, from Definition 2.2.1, we have

0 -1 0

[Qls = [ 0 0 1} =[Q]a
-1 0 0
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thereby confirming Theorem 2.5.2. Note that the representation of this matrix
in any other coordinate frame would be different. For example, if we represent
this matrix in a frame whose X-axis is directed along the axis of rotation of Q,
then we end up with the X-canonical representation of QQ, namely,

1 0 0
[Qlx =10 cos¢ —sing
0 sing cos¢

with the angle of rotation ¢ being readily computed as ¢ = 120°, which thus
yields
1 0 0
[Qlx= [0 -1/2 —v3/2
0 V3/2 -1/2
Apparently, the entries of [Q]x are different from those of [Q]4 and [Q]s

found above.
Now, from eq.(2.93),

0 0 -1][1 -1
[pls=|-1 0 0| [|1]|=]|-1
0 1 0|1 1

a result that can be readily verified by inspection.

2.5.2 Coordinate Transformation with Origin Shift

Now, if the coordinate origins do not coincide, let b be the position vector of O,
the origin of B, from O, the origin of A, as shown in Fig. 2.6. The corresponding
coordinate transformation from A to B, the counterpart of Theorem 2.5.1, is
given below.

Theorem 2.5.4 The representations of the position vector p of a point P of
the Fuclidean 3-dimensional space in two frames A and B are related by

[pla=[bla+[Qla[r]s (2.94a)
[7]s =[Q]5([-bla+[pla) (2.94b)

with b defined as the vector directed from the origin of A to that of B, and =
the vector directed from the origin of B to P, as depicted in Fig. 2.6.

Proof: We have, from Fig. 2.6,
p=b+m (2.95)
If we express the above equation in the A-frame, we obtain

[Pla=[bla+[m]a
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Figure 2.6: Coordinate frames with different origins

where 7 is assumed to be readily available in B, and so the foregoing equation
must be expressed as

[Pla=[bla+[Qla[r]s

which thus proves eq.(2.94a). To prove eq.(2.94b), we simply solve eq.(2.95) for
7 and apply eq.(2.93) to the equation thus resulting, which readily leads to the
desired relation.

Example 2.5.2 If [b]4 =[—1,—1, —1]T and A and B have the relative ori-
entations given in Example 2.5.1, find the position vector, in B, of a point P of
position vector [p] 4 given as in the same example.

Solution: What we obviously need is [ ]g, which is given in eq.(2.94b). We
thus compute first the sum inside the parentheses of that equation, i.e.,

2
[-bla+[pla= g

We need further [ Q7 |5, which can be readily derived from [Q]s. We do not
have as yet this matrix, but we have [ QT ]4, which is identical to [Q” |z by
virtue of Theorem 2.5.2. Therefore,

0 0 —1772 )
[wls=|-1 0 0] |2|=]-2
0 1 01]2 2

a result that the reader is invited to verify by inspection.
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2.5.3 Homogeneous Coordinates

The general coordinate transformation, involving a shift of the origin, is not
linear, in general, as can be readily realized by virtue of the nonhomogeneous
term involved, i.e., the first term of the right-hand side of eq.(2.94a), which
is independent of p. Such a transformation, nevertheless, can be represented
in homogeneous form if homogeneous coordinates are introduced. These are
defined below: Let [p]ar be the coordinate array of a finite point P in reference
frame M. What we mean by a finite point is one whose coordinates are all
finite. We are thus assuming that the point P at hand is not at infinity, points
at infinity being dealt with later. The homogeneous coordinates of P are those
in the 4-dimensional array {p}m, defined as

{PIm = [[pl]’”] (2.96)

The affine transformation of eq.(2.94a) can now be rewritten in homogene-
ous-coordinate form as

{Pla={T}a{m}s (2.97)
where {T} 4 is defined as a 4 x 4 array, i.e.,
{Tha= [[(%]ﬁ [bl]“‘] (2.98)

Furthermore, similar to Theorem 2.5.2, we have

Theorem 2.5.5 The representations of {T} carrying coordinates in frome B
into coordinates in frame A, in these two frames, are identical:

{T}a={T}s (2.99)

The inverse transformation of that defined in eq.(2.98) is derived from eqs.(2.94a
& b), i.e.,

—1 _ [QT]B [-bls
(1= (e 1700 (2:100

Furthermore, homogeneous transformations can be concatenated. Indeed,
let F, for k =i—1, 4, i+ 1, denote three coordinate frames, with origins at Oy.
Moreover, let Q;—; be the rotation carrying F;_; into an orientation coinciding
with that of F;. If a similar definition for Q; is adopted, then Q; denotes the
rotation carrying F; into an orientation coinciding with that of F;, . First, the
case in which all three origins coincide is considered. Clearly,

[Pl =[Q 1 Jica[pli-1 (2.101)
[pliva = [Q] lilp)i = [Q] 1:[QI_; lica[Plis (2.102)
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the inverse relation of that appearing in eq.(2.102) being
[Plic1 = [Qi-11i-1[ Qi Jilp lira (2.103)

If now the origins do not coincide, let a;_; and a; denote the vectors O;_10;
and 0;0;41, respectively. The homogeneous-coordinate transformations {T;—1 }i~1
and {T;}; thus arising are obviously

{Tiz1}io1 = [[%ﬁi]:l [ai—i ]i—l] , {Ti}hi= H(?qft [ali]i] (2.104)

whereas their inverse transformations are

T 1.

{T—11}1 — l:[%fi]i [Q 1] [ a;— 1]1 1] (2‘105)
(T = [[Q Ji+1 [Q?]i+1[—ai]i] (2.106)

’ [07 )it 1

Hence, the coordinate transformations involved are?
{p}ti-1 = {Ti-1}i-1{p}: (2.107)
{pli-1 = {Ti—1}i-1{Ti}e{Plina (2.108)
the corresponding inverse transformations being

{p}i={T }i-1{p }isr (2.109)
{plir1 ={T7 }{p}i = {T7 }{ T Yo { P }icn (2.110)

Now, if P lies at infinity, we can express its homogeneous coordinates in a
simpler form. To this end, we rewrite expression (2.96) in the form

hac= ol [ 151 ]

i m (Pl = <npl|i|§l “p”) (npn%oo[g/l}ffll])

oo PYM = <le|i|r3m||p||) [[GAM}

We now define the homogeneous coordinates of a point P lying at infinity as
the 4-dimensional array appearing in the foregoing expression, i.e.,

and hence,

or

{Pootm = [[e(])M] (2.111)

2The derivations below are more easily understood with the aid of Theorem 2.5.5, under
which {T;}s = {T:}i-1
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which means that a point at infinity, in homogeneous coordinates, has only a
direction, given by the unit vector e, but an undefined location. When working
with objects within the atmosphere of the Earth, for example, stars can be
regarded as lying at infinity, and hence, their location is completely specified
simply by their longitude and latitude, which suffice to define the direction
cosines of a unit vector in spherical coordinates.

On the other hand, a rotation matrix can be regarded as composed of three
columns, each representing a unit vector, e.g.,

Q=[e; e e3]

where the triad { ey, }$ is orthonormal. We can thus represent { T } 4 of eq.(2.98)
in the form
_ler e ez b
{T}A—[O 0 0 1] (2.112)
thereby concluding that the columns of the 4 x 4 matrix T represent the homo-
geneous coordinates of a set of corresponding points, the first three of which lie
at infinity.

Example 2.5.3 An ellipsoid is centered at a point Og of position vector b, its
three azxes X, Y, and Z defining a coordinate frame B. Moreover, its semiazes
have lengths a = 1, b = 2, and ¢ = 3, the coordinates of Op in a coordinate
frame A being [bla = [1,2,3]T. Additionally, the direction cosines of X
are (0.933, 0.067, —0.354), whereas Y is perpendicular to b and to the unit
vector u that is parallel to the X -azis. Find the equation of the ellipsoid in A.
(This example has relevance in collision-avoidance algorithms, some of which
aepproximate manipulator links as ellipsoids, thereby easing tremendously the
computational requirements.)

Solution: Let u, v, and w be unit vectors parallel to the X-, Y-, and Z-axes,
respectively. Then,

0.933
[ula=| 00671, vzﬂ, w=uxv
—0.354 |lu x bl
and hence,
0.243 —0.266
[via=|-0843|, [w]a=[-0.535
0.481 —0.803

from which the rotation matrix Q, rotating the axes of A into orientations
coinciding with those of B, can be readily represented in A, or in B for that
matter, as

0.933  0.243 —0.266
[Qla=[u,v,wla=]| 0067 —0.843 —0.535
—0.354  0.481 —0.803
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On the other hand, if the coordinates of a point P in 4 and B are [p]a =
[p1, P2, p3]T and [7]g = [71, 72, 73 ]7, respectively, then the equation of the
ellipsoid in B is, apparently,

2 2
. T Ty
B: 1—2+§—2-+

3

32 =1

Now, what is needed in order to derive the equation of the ellipsoid in A is
simply a relation between the coordinates of P in B and those in 4. These
coordinates are related by eq.(2.94b), which requires [Q7 |5, while we have
[Q].4. Nevertheless, by virtue of Theorem 2.5.2

0.933  0.067 —0.354
[QT15=[QT|a=| 0243 —0843 0.481
-0.266 —0.535 —0.803

Hence,
0.933 0.067 -0.354 -1 ”
[7]s = 0.243 -0.843 0.481 -2+ |p
—-0.266 —0.535 -—0.803 -3 3
Therefore,

m = 0.933p1 + 0.067p2 — 0.354p3 — 0.005
g = 0243])1 - 0843p2 + 0.481p3
73 = —0.266p; — 0.535ps — 0.803ps + 3.745

Substitution of the foregoing relations into the ellipsoid equation in B leads to

A: 32.1521p,% + 7.70235p, + 9.17286p3* — 8.30524p; — 16.0527p,
—23.9304p3 + 9.32655p1pa + 9.02784pops — 19.9676p;ps + 20.101 = 0

which is the equation sought, as obtained using computer algebra.

2.6 Similarity Transformations

Transformations of the position vector of points under a change of coordinate
frame involving both a translation of the origin and a rotation of the coordinate
axes was the main subject of Section 2.5. In this section, we study the transfor-
mations of components of vectors other than the position vector, while extending
the concept to the transformation of matrix entries. How these transformations
take place is the subject of this section.

What is involved in the present discussion is a change of basis of the associ-
ated vector spaces, and hence, this is not limited to 3-dimensional vector spaces.
That is, n-dimensional vector spaces will be studied in this section. Moreover,
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only isomorphisms, i.e., transformations L of the n-dimensional vector space V
onto itself will be considered. Let A4 = {a;}7 and B = {b;}} be two different
bases of the same space V. Hence, any vector v of V can be expressed in either
of two ways, namely,

v =q@a) + azas + -+ +aza, (2.113)
v =/[1by + foba + - + Brbs (2.114)

from which two representations of v are readily derived, namely,

ax P
[v]a= O? , Ivls= ﬂf (2.115)
a B
Furthermore, let the two foregoing bases be related by
b; = ajja; + agjan +---+anja,, j=1,...,n (2.116)

Now, in order to find the relationship between the two representations of
eq.(2.115), eq.(2.116) is substituted into eq.(2.114), which yields

v = f1(an1a1 + az1as + - -+ + ap1an)
+ B2(a12a1 + agpag + -« - + an2ay,)

+ Bnlainay + agnas + -+ - + apnag) (2.117)
This can be rearranged to yield
v ={(anf1 +a2fr+ - +awmbn)a
+ (a2101 + a22f2 + - - - + ag2nfn)as
+ (@181 + an2f2 + -+ + annfin)an (2.118)

Comparing eq.(2.118) with eq.(2.113), one readily derives

[via=[Alalv]s (2.119)
where
ayx aiz -+ Qin
a a e a n
[Ala=| . T (2.120)

Ap1 GQp2 " Qpp
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which are the relations sought. Clearly, the inverse relationship of eq.(2.119) is
[vis=[A""])alv]a (2.121)

Next, let L have the representation in A given below:

ln ho o ln
l l v o

[Lla=|" 7 ’ (2.122)
lnl ln2 ot lnn

Now we aim at finding the relationship between [L]4 and [L]g. To this end,
let w be the image of v under L, i.e.,

Lv=w (2.123)
which can be expressed in terms of either A4 or B as

[LIulvIa=[w]a (2.124)
[Llglvls =[wls (2.125)

Further, since L is an isomorphism by hypothesis, w of eq.(2.123) lies in the
same space V as v. Hence, similar to eq.(2.119),

[wla=[Alalw]s (2.126)
Now, substitution of eqs.(2.119) and (2.126) into eq.(2.124) yields
[Ala[w]s = [L]a[Ala[v]s (2.127)

which can be readily rearranged in the form
[wls = [AT J4[L]a[A)a[V]s (2.128)
Comparing eq.(2.125) with eq.(2.128) readily leads to
[L]s =[A7 4[L]a[A]4 (2.129)
which upon rearrangement, becomes
[L]a=[Ala[L]s[A™" 14 (2.130)
Now, paraphrasing Theorems 2.5.2 and 2.5.4, we can state

Theorem 2.6.1 The representations of A carrying A into B in these two
frames are identical, i.e.,
[Ala=[Als (2.131)
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Proof: Substitute L for A in eq.(2.129) to obtain the above relation, q.e.d.

Relations (2.119), (2.121), (2.129), and (2.130) constitute what are called
similarity transformations. These are important because they preserve invariant
quantities such as the eigenvalues and eigenvectors of matrices, the magnitudes
of vectors, the angles between vectors, and so on. Indeed, one has:

Theorem 2.6.2 The characteristic polynomial of a given n xn matriz remains
unchanged under a similarity transformation. Moreover, the eigenvalues of two
matriz representations of the same n x n linear transformation are identical,
and if [e]g is an eigenvector of [L]p, then under the similarity transformation
(2.130), the corresponding eigenvector of [L]4 is [e]a =[A]ale]s.

Proof: From eq.(2.11), the characteristic polynomial of [L]g is
P(X) =det(\[1]g —[L]r) (2.132)
which can be rewritten as

P(X) = det(AN A Ja[1]a[A)a = [AT JA[L]A[AR)
= det([A™ JA4(A[1]4 = [LIA[A]A)
= det([A™"]4)det(A[1]4 — [L]a)det([A]4)
But
det([A™" 4)det([A]4) =1

and hence, the characteristic polynomial of [L]4 is identical to that of [L]gz.
Since both representations have the same characteristic polynomial, they have
the same eigenvalues. Now, if [e]g is an eigenvector of [L]p associated with
the eigenvalue A, then

[Llsle]ls = Alels
Next, eq.(2.129) is substituted into the foregoing equation, which thus leads to
[A~'A[L]a[Aale]s = Ae]s
Upon rearrangement, this equation becomes
[L]a[Alale]s = A[A]a[e]s (2.133)

whence it is apparent that [ A]4[e]p is an eigenvector of [L] 4 associated with
the eigenvalue A, g.e.d.

Theorem 2.6.3 If[L]4 and [L]p are related by the similarity transformation
(2.129), then
[L¥]s = [A7" Ja[L*Ja[Ala (2.134)

for any integer k.
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Proof: This is done by induction. For k = 2, one has

[L?]g = [AT A[L)A[A]A[AT AL Al A LA
=[AT 4L )a[Al4

Now, assume that the proposed relation holds for k¥ = n. Then,

(L ) = [AT AL JA[AJA[AT JA[L]A[A A
=[AT LT A[A)A

i.e., the relation holds for £ =n + 1 as well, thereby completing the proof.

Theorem 2.6.4 The trace of a n Xn matriz does not change under a similarity
transformation.

Proof: A preliminary relation will be needed: Let [A], [B] and [C] be three
different n x n matrix arrays, in a given reference frame, that need not be
indicated with any subscript. Moreover, let a;;, bi;, and ¢;; be the components
of the said arrays, with indices ranging from 1 to n. Hence, using standard
index notation,

tI‘([A] [B] [C]) = aijbjkcki = 051 CriQi; = tr([B] [C] [A]) (2135)

Taking the trace of both sides of eq.(2.129) and applying the foregoing result
produces

tr([L]s) = tr((A7' Ja[L]a[A]a) = tr([AJA[ AT 4[L]4) = tr([L]a)
(2.136)
thereby proving that the trace remains unchanged under a similarity transfor-
mation.

Example 2.6.1 We consider the equilateral triangle sketched in Fig. 2.7, of
side length equal to 2, with vertices Py, P53, and P3, and coordinate frames A
and B of azes X, Y and X', Y, respectively, both with origin at the centroid of
the triangle. Let P be a 2 x 2 matriz defined by

P=[p: p2]

with p; denoting the position vector of P; in o given coordinate frame. Show
that matriz P does not obey a similarity transformation upon a change of frame,
and compute its trace in frames A and B to make it apparent that this matriz
does not comply with the conditions of Theorem 2.6.4.

Solution: From the figure it is apparent that

1 0 0 1
Pla= [ Jigs avis]e Pl Vi
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Figure 2.7: Two coordinate frames used to represent the position vectors of the
corners of an equilateral triangle

Apparently,

2v3 V3
— #u((Pls) =+

The reason why the trace of this matrix did not remain unchanged under a
coordinate transformation is that the matrix does not obey a similarity trans-
formation under a change of coordinates. Indeed, vectors p; change as

tr((Pla) =1+

[Pi]la=[Qlalp:ils

under a change of coordinates from B to .4, with Q denoting the rotation car-
rying A into B. Hence,

[Pla=[QJa[P]s

which is different from the similarity transformation of eq.(2.130). However, if
we now define

R = PPT
then . Vi3 . Vi3
[Rla=1_y3/3 /3 ] [R]s = [\/3/3 5/3 ]
and hence,

t(RL) = r(Rls) = 3

thereby showing that the trace of R does not change under a change of frame. In
order to verify whether matrix R. complies with the conditions of Theorem 2.6.4,
we notice that, under a change of frame, matrix R changes as

[R]4 = [PP"]4=[Ql4[P]s([Q]a[P]5)" = [QIA[PPIF[Q" |4

which is indeed a similarity transformation.
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2.7 Invariance Concepts

From Example 2.6.1 it is apparent that certain properties, like the trace of
certain square matrices, do not change under a coordinate transformation. For
this reason, a matrix like R of that example is said to be frame-invariant, or
simply invariant, whereas matrix P of the same example is not. In this section,
we formally define the concept of invariance and highlight its applications and
its role in robotics. Let a scalar, a vector, and a matrix function of the position
vector p be denoted by f(p), £f(p) and F(p), respectively. The representations
of £(p) in two different coordinate frames, labelled A and B, will be indicated as
[f(p)]4 and [f(p)]B, respectively, with a similar notation for the representations
of F(p). Moreover, let the two frames differ both in the location of their origins
and in their orientations. Additionally, let the proper orthogonal matrix [Q) 4
denote the rotation of coordinate frame A into B. Then, the scalar function
f(p) is said to be frame invariant, or invariant for brevity, if

f(lplg) = F([pla) (2.137)
Moreover, the vector quantity f is said to be invariant if
[fla = [Qlalflz (2.138)
and finally, the matrix quantity F is said to be invariant if
[Fla = [QI4F]5[Q"]4 (2.139)

Thus, the difference in origin location becomes irrelevant in this context, and
hence, will no longer be considered. From the foregoing discussion, it is clear
that the same vector quantity has different components in different coordinate
frames; moreover, the same matrix quantity has different entries in different
coordinate frames. However, certain scalar quantities associated with vectors,
e.g., the inner product, and matrices, e.g., the matrix moments, to be defined
presently, remain unchanged under a change of frame. Additionally, such vector
operations as the cross product of two vectors are invariant. In fact, the scalar
product of two vectors a and b remains unchanged under a change of frame,
ie.,

[a]%[bl, =[al5[b]s (2.140)
Additionally,
[axb]l,=[Q],[axblg (2.141)

The kth moment of a n x n matrix T, denoted by 7y, is defined as (Leigh,
1968)
Tr = t(TY), k=0,1,... (2.142)

where Zg = tr(1) = n. Now we have

Theorem 2.7.1 The moments of a n X n matriz are invariant under o simi-
larity transformation.
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Proof: This is straightforward. Indeed, from Theorem 2.6.3, we have
[T )5 =[A7 Al T*|4[ A4 (2.143)

Now, let [ZIi ] 4 and [Zi ]z denote the kth moment of [T], and [T]g, respec-
tively. Thus,

[Zx )5 =tr([A—1]A [Tk]A[A]A) =tr([A]4 [A—I]A [Tk]A)
= te([T*] ) = [Tl

thereby completing the proof.
Furthermore,

Theorem 2.7.2 A n x n matriz has only n linearly independent moments.

Proof: Let the characteristic polynomial of T be
PN =ay+aiA+-+a A"+ A" =0 (2.144)
Upon application of the Cayley-Hamilton Theorem, eq.(2.144) leads to
apl +a1 T+ +a TV +T" =0 (2.145)

where 1 denotes the n x n identity matrix.
Now, if we take the trace of both sides of eq.(2.145), and Definition (2.142)
is recalled, one has

a()I() + 011-1 R R an_lIn_l + In =0 (2146)

from which it is apparent that Z,, can be expressed as a linear combination of
the first n moments of T, { Z; }5~!. By simple induction, one can likewise prove
that the mth moment is dependent upon the first n moments if m > n, thereby
completing the proof. Also notice that Zg = n, and hence, all n X n matrices
share the same zeroth moment 1.

The vector invariants of a n x n matrix are its eigenvectors, which have a di-
rect geometric significance in the case of symmetric matrices. The eigenvalues of
these matrices are all real, its eigenvectors being also real and mutually orthogo-
nal. Skew-symmetric matrices, in general, need not have either real eigenvalues
or real eigenvectors. However, if we limit ourselves to 3 x 3 skew-symmetric
matrices, exactly one of their eigenvalues, and its associated eigenvector, are
both real. The eigenvalue of interest is 0, and the associated vector is the axial
vector of the matrix under study.

It is now apparent that two n x n matrices related by a similarity transfor-
mation have the same set of moments. Now, by virtue of Theorem 2.7.2, one
may be tempted to think that if two n x n matrices share their first n moments
{Z }3~', then the two matrices are related by a similarity transformation. To
prove that this is not the case, let two n x n matrices A and B have character-
istic polynomials with coefficients {ax}"~! and {b;}§~', respectively, the two
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sets being not necessarily identical. Moreover, let the n + 1 moments of A and
B be denoted by {Z; }§ and {Z} }3, with

To=ITy=n, Iy=1;, for k=1,...,n—1
Hence, from eq.(2.146),

In — _(aon + all-l +...+ an—lIn—l)
T, = ~(bon + b1 T + ... + ba-1Zn-1)

Therefore, in spite of Theorem 2.7.2, two n x n matrices with identical moments
Iy = I, for k = 1,...,n — 1 may still have Z,, # T, if these matrices are not
related by a similarity transformation, and hence, have distinct characteristic
polynomials. We thus have

Theorem 2.7.3 Two n x n matrices are related by o similarity transformation
if and only if their n moments {Z;}} are identical.

Hence,

Corollary 2.7.1 If two n x n matrices share the same n moments {Iy}7, then
their characteristic polynomials are identical.

Consider the two matrices A and B given below:

Al 4 meli

The two foregoing matrices cannot possibly be related by a similarity transfor-
mation, for the first one is the identity matrix, while the second is not. However,
the two matrices share the two moments Zg = 2 and 7; = 2. Let us now compute
the second moments of these matrices:

tr(A%) =2, tr(B?) = tr [5 4] ~ 10
4 5

which are indeed different. Therefore, to test whether two different n x n ma-
trices represent the same linear transformation, and hence, are related by a
similarity transformation, we must verify that they share the same set of n + 1
moments { Zj }§. In fact, since all n xn matrices share the same zeroth moment,
only the n moments { Z}, }1 need be tested for similarity verification. That is, if
two n X n matrices share the same n moments { Z; }7, then they represent the
same linear transformation, albeit in different coordinate frames.

The foregoing discussion does not apply, in general, to nonsymmetric ma-

trices, for these matrices are not fully characterized by their eigenvalues. For
example, consider the matrix

11 , 1 2
A‘[o 1] = A"[o 1J
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Its two moments of interest are Z; = tr(A) = 2, Z; = 2, which happen to be the
corresponding moments of the 2 x 2 identity matrix as well. However, while the
identity matrix leaves all 2-dimensional vectors unchanged, matrix A does not.

Now, if two symmetric matrices, say A and B, represent the same trans-
formation, they are related by a similarity transformation, i.e., a nonsingular
matrix T exists such that

B =T AT

Given A and T, then, finding B is trivial, a similar statement holding if B
and T are given; however, if A and B are given, finding T is more difficult. The
latter problem occurs sometimes in robotics in the context of calibration, to be
discussed in Subsection 2.7.1.

Example 2.7.1 Two symmetric matrices are displayed below. Find out whether
they are related by a similarity transformation.

101 1 0 0
A=[010|, B=|0 2 -1
1 0 2 0 -1 1

Solution: The traces of the two matrices are apparently identical, namely, 4.
Now we have to verify whether their second and third moments are also identical.
To do this, we need the square and the cube of the two matrices, from which
we then compute their traces. Thus, from

2 0 3 1 0 0
A’=10 1 0|, B*=|0 5 -3
305 0 -3 2

we readily obtain
tr(A%) =tr(B?) =8

Moreover,
5 0 8 1 0 0
A*=10 1 0}, B*=|0 13 -8
8 0 13 0 -8 5

whence

tr(A%) = tr(B?) = 19
Therefore, the two matrices are related by a similarity transformation. Hence,
they represent the same linear transformation.

Example 2.7.2 Same as Example 2.7.1, for the two matrices disployed below:

1 0 2 111
A={01 0|, B=|110
2 0 0 100

Solution: As in the previous example, the traces of these matrices are identical,
i.e., 2. However, tr(A?) = 10, while tr(B2?) = 6. We thus conclude that the two
matrices cannot be related by a similarity transformation.
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2.7.1 Applications to Redundant Sensing

A sensor, such as a camera or a range finder, is often mounted on a robotic
end-effector to determine the pose—i.e., the position and orientation, as defined
in Subsection 3.2.3—of an object. If redundant sensors are introduced, and
we attach frames A and B to each of these, then each sensor can be used to
determine the orientation of the end-effector with respect to a reference pose.
This is a simple task, for all that is needed is to measure the rotation R that
each of the foregoing frames underwent from the reference pose, in which these
frames are denoted by Ag and By, respectively. Let us assume that these mea-
surements produce the orthogonal matrices A and B, representing R in A and
B, respectively. With this information we would like to determine the relative
orientation Q of frame B with respect to frame 4, a problem that is called here
instrument calibration.

We thus have A = [R], and B = [R ], and hence, the algebraic problem
at hand consists in determining [Q], or equivalently, [Q]z. The former can
be obtained from the similarity transformation of eq.(2.139), which leads to

A =[Q],4B[Q"]4

or
A[Q]A = [Q]AB

This problem could be solved if we had three invariant vectors associated
with each of the two matrices A and B. Then, each corresponding pair of vectors
of these triads would be related by eq.(2.138), thereby obtaining three such vec-
tor equations that should be sufficient to compute the nine components of the
matrix Q rotating frame A into B. However, since A and B are orthogonal ma-
trices, they admit only one real invariant vector, namely, their axial vector, and
we are short of two vector equations. We thus need two more invariant vectors,
represented in both A and B, to determine Q. The obvious way of obtaining
one additional vector in each frame is to take not one, but two measurements
of the orientation of Ag and By with respect to A and B, respectively. Let the
matrices representing these orientations be given, in each of the two coordinate
frames, by A; and B, for ¢ = 1,2. Moreover, let a; and b;, for i = 1, 2, be the
axial vectors of matrices A; and B;, respectively.

Now we have two possibilities: () neither of a; and as and, consequently,
neither of by and by, is zero; and (i4) at least one of a; and aj, and conse-
quently, the corresponding vector of the { by, by } pair, vanishes. In the first
case, nothing prevents us from computing a third vector of each set, namely,

az = a; X asg, b3 = b1 X bg (2147)

In the second case, however, we have two more possibilities, namely, the angle
of rotation of that orthogonal matrix, A; or Aj, whose axial vector vanishes
is either 0 or wn. If the foregoing angle vanishes, then A underwent a pure
translation from A4g, the same holding, of course, for B and By. This means
that the corresponding measurement becomes useless for our purposes, and a
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new measurement is needed, involving a rotation. If, on the other hand, the
same angle is 7, then the associated rotation is symmetric and the unit vector e
parallel to its axis can be determined from eq.(2.49) in both .4 and B. This unit
vector, then, would play the role of the vanishing axial vector, and we would
thus end up, in any event, with two pairs of nonzero vectors, {a; }3 and {b; }3.
As a consequence, we can always find two triads of nonzero vectors, {a; }3 and
{b; }3, that are related by

a;=[Q] bi, fori=1,2,3 (2.148)

The problem at hand now reduces to computing [Q] 4 from eq.(2.148). In
order to perform this computation, we write the three foregoing equations in
matrix form, namely,

E=[Q]F (2.149)
with E and F defined as
E= [a1 as 83], F= [b1 bz b3] (2.150)

Now, by virtue of the form in which the two vector triads were defined, none of
the two above matrices is singular, and hence, we have

[Q],=EF! (2.151)

Moreover, note that the inverse of F can be expressed in terms of its columns
explicitly, without introducing components, if the concept of reciprocal bases is
recalled (Brand, 1965). Thus,

1 (bz X b3)T
Fl=_ (b3 X bl)T , A=Db; xby: b; (2152)
(b1 X bz)T
Therefore,
1 T T T
[Q].A - z[al(bz X b3) +a2(b3 X b1) +a3(b1 X b2) ] (2153)

thereby completing the computation of [Q], directly and with simple vector
operations.

Example 2.7.3 (Hand-Eye Calibration) Determine the relative orientation
of a frame B attached to a camera mounted on a robot end-effector, with respect
to a frame A fized to the latter, as shown in Fig. 2.8. It is assumed that two
measurements of the orientation of the two frames with respect to frames Ag and
By in the reference configuration of the end-effector are available. These mea-
surements produce the orientation matrices A; of the frame fized to the camera
and B; of the frame fized to the end-effector, for i = 1,2. The numerical data
of this example are given below:
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Figure 2.8: Measuring the orientation of a camera-fixed coordinate frame with
respect to a frame fixed to a robotic end-effector

[ — 0.92502593 —0.37037037 —0.07407407
A= 0.28148148 —0.80740741  0.51851852
| —0.25185185 0.45925926  0.85185185
[ —0.83134406  0.02335236 —0.55526725]

Ay = | —0.52153607  0.31240270  0.79398028
0.19200830  0.94969269 —0.24753503 |
[ —0.90268482  0.10343126 —0.41768659]

B; = | 0.38511568  0.62720266 —0.67698060
0.19195318 —0.77195777 —0.60599932 |
[ —0.73851280 —0.54317226  0.39945305 ]

B, = | —0.45524951  0.83872293  0.29881721
| —0.49733966  0.03882952 —0.86668653 |

Solution: Shiu and Ahmad (1987) formulated this problem in the form of a
matrix linear homogeneous equation, while Chou and Kamel (1988) solved the
same problem using quaternions and very cumbersome numerical methods that
involve singular-value computations. The latter require an iterative procedure
within a Newton-Raphson method, itself iterative, for nonlinear-equation solv-
ing. Other attempts to solve the same problem have been reported in the lit-
erature, but these also resorted to extremely complicated numerical procedures
for nonlinear-equation solving (Chou and Kamel, 1991; Horaud and Dornaika,
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1995). The latter proposed a more concise method based on quaternions—
isomorphic to the Euler-Rodrigues parameters—that nevertheless is still com-
putationally expensive.

More recently, Daniilidis (1999) proposed an algorithm based on dual quater-
nions to simultaneously estimate the relative pose of the two frames of interest.
In this book we do not study either quaternions—at least, not by this name—or
dual algebra; the former are, in fact, isomorphic to the Euler-Rodrigues param-
eters of a rotation, which were introduced in Subsection 2.3.6. Dual algebra,
in turn, is used to manipulate scalars, vectors and matrices comprising one ro-
tation and one translation, or their statics counterparts, one moment and one
force (Angeles, 1998). In the above reference, Daniilidis resorts to the singular-
value decomposition to find the relative pose in question, but this decomposition
slows down the computational procedure. Angeles et al. (2000), in turn, pro-
posed an alternative approach based on the invariance concepts introduced in
this section, that leads to an algorithm involving only linear equations. This al-
gorithm, moreover, relies on recursive least-square computations, thereby doing
away with singular-value computations and allowing for real-time performance.
This reference and (Daniilidis, 1999) report experimental results.

The approach outlined in this example is essentially the same as that pro-
posed in (Angeles, 1989), although here we have streamlined the procedure of
this reference.

First, the vector of matrix A;, represented by a;, and the vector of matrix
B;, represented by b;, for i = 1,2, are computed from simple differences of the
off-diagonal entries of the foregoing matrices, followed by a division by 2 of all
the entries thus resulting, which yields

'—0.029629631 0.07784121W

a; =] 0.08888889 |, a;= |—0.37363778
0.32592593 | | —0.27244422 |
[ —0.04748859] [ ~0.12999385 ]

b, —0.30481989 |, b, = | 0.44869636
0.14084221 | 0.04396138 |

In the calculations below, 16 digits were used, but only eight are displayed.
Furthermore, with the foregoing vectors, we compute az and bz from cross
products, thus obtaining

[0.09756097
0.01730293
| 0.00415020

az =

[ —0.07655343
—0.01622096
| —0.06091842

bz =

Furthermore, A is obtained as

A = 0.00983460



2.8 Exercises 79

while the individual rank-one matrices inside the brackets of eq.(2.153) are cal-
culated as

r

0.00078822  0.00033435 —0.00107955]
a;(by x bg)T = | —0.00236467 —0.00100306  0.00323866
| —0.00867044 —0.00367788  0.01187508 |

[ —0.00162359  0.00106467  0.00175680 |
as(bz x b;)T = | 0.00779175 —0.00510945 —0.00843102
| 0.00568148 ~0.00372564 —0.00614762

[ —0.00746863 —0.00158253 —0.00594326 ]
az(b; x by)T = | -0.00132460 —0.00028067 —0.00105407
| —0.00031771 —0.00006732 —0.00025282 |

whence Q in the A4 frame is readily obtained as

—0.84436553 —0.01865909 —0.53545750
Q4= 0.41714750 —0.65007032 —0.63514856
—0.33622873 —0.75964911  0.55667078

thereby completing the desired computation.

2.8 Exercises

2.1 Prove that the range and the nullspace of any linear transformation L of
vector space U into vector space V are vector spaces as well, the former of
V, the latter of U/.

2.2 Let L map U into V and dim{l/} = n, dim{V} = m. Moreover, let R and
N be the range and the nullspace of L, their dimensions being p and v,
respectively. Show that p + v = n.

2.3 Given two arbitrary nonzero vectors u and v in £3, find the matrix P
representing the projection of £2 onto the subspace spanned by u and v.

2.4 Verify that P, whose matrix representation in a certain coordinate system
is given below, is a projection. Then, describe it geometrically, i.e., iden-
tify the plane onto which the projection takes place. Moreover, find the
nullspace of P.

1 2 1 -1
-1 1 2

2.5 If for any 3-dimensional vectors a and v, matrix A is defined as

d(axv)

A Ov
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2.9

2.10

2.11
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then we have
8(v x a)
ov

Show that A is skew-symmetric without introducing components.

AT

Let u and v be any 3-dimensional vectors, and define T as
T=1+uv’

The (unit) eigenvectors of T are denoted by wy, wa, and w3. Show that,
say, w1 and wq are any unit vectors perpendicular to v and different
from each other, whereas w3 = u/||ul|. Also show that the corresponding
eigenvalues, denoted by A1, Az, and Aj, associated with wy, wy, and wj,
respectively, are given as

AM=X=1 Xl=14u-v

Show that if u and v are any 3-dimensional vectors, then
detl4+uv)y=14+u-v
Hint: Use the results of the Ezxercise 2.6.

For the two unit vectors e and f in 3-dimensional space, define the two
reflections

Ri=1—2ee’, Ro=1-2¢f7

Now, show that Q = RyR; is a rigid-body rotation, and find its axis and
its angle of rotation in terms of unit vectors e and f. Again, no components
are permitted in this exercise.

State the conditions on the unit vectors e and f, of two reflections Ry
and R, respectively, under which a given rotation Q can be factored into
the reflections R; and R given in the foregoing exercise. In other words,
not every rotation matrix Q can be factored into those two reflections, for
fixed e and f, but special cases can. Identify these cases.

Prove that the eigenvalues of the cross-product matrix of the unit vector
e are 0, j, and —j, where j = v/—1. Find the corresponding eigenvectors.

Without resorting to components, prove that the eigenvalues of a proper
orthogonal matrix Q are 1, ¢/%, and e~7¢, with ¢ denoting the angle of
rotation. Hint: Use the result of the foregoing ezercise and the Cayley-
Hamilton Theorem.
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2.12 Find the axis and the angle of rotation of the proper orthogonal matrix
Q given below in a certain coordinate frame F.

1 -1 -2 2
[Qr]= 3172 -1 -2
2 -2 -1

2.13 Find E and ¢ of the exponential representation of the rotation matrix
given in Exercise 2.12.

2.14 Cayley’s Theorem, which is not to be confused with the Theorem of
Cayley-Hamilton, states that every 3 x 3 proper orthogonal matrix Q
can be uniquely factored as

Q=(1-8)1+S)!

where S is a skew-symmetric matrix. Find a general expression for S
in terms of Q, and state the condition under which this factoring is not
possible.

2.15 Find matrix S of Cayley’s factoring for Q as given in Exercise 2.12.

2.16 If Q represents a rotation about an axis parallel to the unit vector e
through an angle ¢, then the Rodrigues vector p of this rotation can be

defined as
p = tan (g) e

Note that if r and r¢ denote the Euler-Rodrigues parameters of the rota-
tion under study, then p = r/rg. Show that

p = —vect(S)
for S given in Exercise 2.14.

2.17 The vertices of a cube, labeled A, B, ..., H, are located so that 4, B, C,
and D, as well as E, F, GG, and H, are in clockwise order when viewed
from outside. Moreover, AE, BH, CG, and DF are edges of the cube,
which is to be manipulated so that a mapping of vertices takes place as
indicated below:

A—-D, B»C, C—>G, D->»F
E—-A F—-E G—-H H-B

Find the angle of rotation and the angles that the axis of rotation makes
with edges AB, AD, and AE.

2.18 (Euler angles) A rigid body can attain an arbitrary configuration starting
from any reference configuration, 0, by means of the composition of three
rotations about coordinate axes, as described below: Attach axes Xg, Yg,
and Zg to the body in the reference configuration and rotate the body
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through an angle ¢ about Zg, thus carrying the axes into Xi, Yi, and
Zy (=2p), respectively. Next, rotate the body through an angle 6 about
axis Y7, thus carrying the axes into Xa, Y5, and Z, respectively. Finally,
rotate the body through an angle ¥ about Zs so that the axes coincide
with their desired final orientation, X3, Y3, and Z3. Angle 4 is chosen so
that axis Zs lies in the plane of Zg and X, whereas angle 8 is chosen so
as to carry axis Z1 (=Zg) into Zs (=Z,). Show that the rotation matrix
carrying the body from configuration 0 to configuration 3 is:

cOeperp — spsy)  —cledsyy — spe)  sBeq
Q = | clsécy + chpsyp —clsdsy + cpeyp  86s¢d
—88cyp s6sy cf

where ¢(-) and s(-) stand for cos(-) and sin(-), respectively. Moreover,
show that a, the angle of rotation of Q given above, obeys the relation

s (2) = o () o ()

Given an arbitrary rigid-body rotation about an axis parallel to the unit
vector e through an angle ¢, it is possible to find both e and ¢ using the
linear invariants of the rotation matrix, as long as the vector invariant does
not vanish. The latter happens if and only if ¢ = 0 or 7. Now, if ¢ = 0,
the associated rotation matrix is the identity, and e is any 3-dimensional
vector; if ¢ = 7, then we have

Q(7) = Qr = —1+ 2ee”

whence we can solve for ee as

ee’ = %(Q,r +1)

Now, it is apparent that the three eigenvalues of Q, are real and the
associated eigenvectors are mutually orthogonal. Find these.

Explain why all the off-diagonal entries of a symmetric rotation matrix
cannot be negative.

The three entries above the diagonal of a 3 x 3 matrix Q that is supposed
to represent a rotation are given below:

1 2 _§
CI23—4

Without knowing the other entries, explain why the above entries are
unacceptable.
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2.22

2.23

2.24

2.25

2.26

2.27

2.28

Let pi, p2, and ps be the position vectors of three arbitrary points in
3-dimensional space. Now, define a matrix P as

P=[pi p2 p3]

Show that P is not frame-invariant. Hint: Show, for erample, that it is
always possible to find a coordinate frame in which tr(P) vanishes.

For P defined as in Exercise 2.22, let
q = tr(P?) — tr*(P)

Show that ¢ vanishes if the three given points and the origin are collinear,
for P represented in any coordinate frame.

For P defined, again, as in Exercise 2.22, show that PP7 is invariant
under frame-rotations about the origin, and becomes singular if and only
if either the three given points are collinear or the origin lies in the plane

of the three points. Note that this matrix is more singularity-robust than
P.

The diagonal entries of a rotation matrix are known to be —0.5, 0.25, and
—0.75. Find the off-diagonal entries.

As a generalization to the foregoing exercise, discuss how you would go
about finding the off-diagonal entries of a rotation matrix whose diagonal
entries are known to be a, b, and ¢. Hint: This problem can be formulated
as finding the intersection of the coupler curve of a four-bar spherical link-
age (Chiang, 1988), which is a curve on a sphere, with a certain parallel
of the same sphere.

Shown in Fig. 2.9(a) is a cube that is to be displaced in an assembly
operation to a configuration in which face FFGH lies in the XY plane,
as indicated in Fig. 2.9(b). Compute the unit vector e parallel to the axis
of the rotation involved and the angle of rotation ¢, for 0 < ¢ < 7.

The axes Xy, Y1, Z1 of a frame F; are attached to the base of a robotic
manipulator, whereas the axes X2, Y2, Zs of a second frame F» are at-
tached to its end-effector, as shown in Fig. 2.10. Moreover, the origin P
of F, has the Fi-coordinates (1,—1,1). Furthermore, the orientation of
the end effector with respect to the base is defined by a rotation Q, whose
representation in J is given by

1 1 1-+v/3 1++3
Qi=<|1+v3 1 1-v3
31hi-v3 1443 1

(a) What are the end-effector coordinates of point C of Fig. 2.10?
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Figure 2.9: A cube in two different configurations

(b) The end-effector is approaching the ABC plane shown in Fig. 2.10.
What is the equation of the plane in end-effector coordinates? Verify
your result by substituting the answer to (a) into this equation.

Shown in Fig. 2.11 is a cube of unit side, which is composed of two parts.
Frames (Xg, Yo, Zo) and (X1, Y1, Z1) are attached to each of the two
parts, as illustrated in the figure. The second part is going to be picked
up by a robotic gripper as the part is transported on a belt conveyor and
passes close to the stationary first part. Moreover, the robot is to assemble
the cube by placing the second part onto the first one in such a way that
vertices Ay, By, C; are coincident with vertices Ag, By, Co. Determine
the axis and the angle of rotation that will carry the second part onto the
first one as described above.

A piece of code meant to produce the entries of rotation matrices is being
tested. In one run, the code produced a matrix with diagonal entries
—0.866, —0.866, —0.866. Explain how without looking at the other entries,
you can decide that the code has a bug.

Shown in Fig. 2.12 is a rigid cube of unit side in three configurations. The
second and the third configurations are to be regarded as images of the
first one. One of the last two configurations is a reflection, and the other
is a rotation of the first one. Identify the rotated configuration and find
its associated invariants.

Two frames, G and C, are attached to a robotic gripper and to a camera
mounted on the gripper, respectively. Moreover, the camera is rigidly
attached to the gripper, and hence, the orientation of C with respect to G,
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Figure 2.10: Robotic EE approaching a stationary object ABC

denoted by Q, remains constant under gripper motions. The orientation
of the gripper with respect to a frame B fixed to the base of the robot
was measured in both G and C. Note that this orientation is measured in
G simply by reading the joint encoders, which report values of the joint
variables, as discussed in detail in Chapter 4. The same orientation is
measured in C from estimations of the coordinates of a set of points fixed
to B, as seen by the camera.

Two measurements of the above-mentioned orientation, denoted R, and

Zy

By

Cl Yl

A
Xy

Figure 2.11: Roboticized assembly operation
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Figure 2.12: Three configurations of a cube

R, were taken in G and C, with the numerical values reported below:

P

0.667 0.333  0.667

[Ri]g = | —0.667 0.667 0.333 |,
| —0.333 —0.667  0.667
[0.500 0  —0.866

[Rile=| o0  1.000 0

| 0.866 0 0.500
[ 0.707 0577 0.408

[Ra]g = 0 0.577 —0.816 |,
| —0.707 0577  0.408
[1 o 0

[Rale= [0 0.346 —0.938
[0 0.938 0.346

(a) Verify that the foregoing matrices represent rotations.

(b) Verify that the first two matrices represent, in fact, the same rotation
R, albeit in different coordinate frames.

(¢) Repeat item (b) for Ra.

(d) Find [Q]g. Is your computed Q orthogonal? If not, can the error be
attributed to data-incompatibility? to roundoff-error amplification?

2.33 The orientation of the end-effector of a given robot is to be inferred from

joint-encoder readouts, which report an orientation given by a matrix Q
in Fj-coordinates, namely,

1 -1 2 2
Q= 3 2 -1 2
2 2 -1

(a) Show that the above matrix can indeed represent the orientation of
a rigid body.
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2.34

2.35

2.36

2.37

(b) What is Q in end-effector coordinates, i.e., in a frame Fy, if Z7 is
chosen parallel to the axis of rotation of Q?

The rotation Q taking a coordinate frame B, fixed to the base of a robot,
into a coordinate frame G, fixed to its gripper, and the position vector g
of the origin of G have the representations in B given below:

1 1 1-v3 1+43 1-+3
[Qls=5 (1+v3 1 1-V3|, [gls=| V3
1-v3 1+v3 1 1+3

Moreover, let p be the position vector of any point P of the 3-dimensional
space, its coordinates in B being (z, y, z). The robot is supported by a
cylindrical column C of circular cross section, bounded by planes I, and
I1,. These are given below:

C: 2> +y =4, I): 2=0; IT,: 2=10
Find the foregoing equations in G coordinates.

A certain point of the gripper of a robot is to trace an elliptical path of
semiaxes a and b, with center at C, the centroid of triangle PQ R, as shown
in Fig. 2.13. Moreover, the semiaxis of length @ is parallel to edge PQ,
while the ellipse lies in the plane of the triangle, and all three vertices are
located a unit distance away from the origin.

(a) For b = 2a/3, the gripper is to keep a fixed orientation with respect to
the unit tangent, normal, and binormal vectors of the ellipse, denoted
by e, e,, and e, respectively®. Determine the matrix representing
the rotation undergone by the gripper from an orientation in which
vector e; is parallel to the coordinate axis X, while e, is parallel to
Y and e, to Z. Express this matrix in X, Y, Z coordinates, if the
equation of the ellipse, in parametric form, is given as

2’ =acosyp, ¥y =bsiny, 2’ =0

the orientation of the gripper thus becoming a function of ¢.

(b) Find the value of ¢ for which the angle of rotation of the gripper,
with respect to the coordinate axes X, Y, Z, becomes .

With reference to Exercise 2.27, find Euler angles ¢, 8, and 1 that will
rotate the cube of Fig. 2.9(a) into the attitude displayed in Fig. 2.9(b).
For a definition of Euler angles, see Exercise 2.18

Find a sequence of Euler angles ¢, 8, and %), as defined in Exercise 2.18,
that will carry triangle Ay, By, C; into triangle Ag, By, Co, of Fig. 2.11.

3An account of curve geometry is given in Section 11.2
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Figure 2.13: An elliptical path on an inclined plane



Chapter 3

Fundamentals of
Rigid-Body Mechanics

3.1 Introduction

The purpose of this chapter is to lay down the foundations of the kinetostatics
and dynamics of rigid bodies, as needed in the study of multibody mechanical
systems. With this background, we study the kinetostatics and dynamics of
robotic manipulators of the serial type in Chapters 5 and 7, respectively, while
devoting Chapter 6 to the study of trajectory planning. The latter requires,
additionally, the background of Chapter 4. A special feature of the current
chapter is the study of the relations between the angular velocity of a rigid
body and the time-rates of change of the various sets of rotation invariants
introduced in Chapter 2. Similar relations between the angular acceleration
and the second time-derivatives of the rotation invariants are also recalled, the
corresponding derivations being outlined in Appendix A.

Furthermore, an introduction to the very useful analysis tool known as screw
theory (Roth, 1984) is included. In this context, the concepts of twist and wrench
are introduced, which prove in subsequent chapters to be extremely useful in
deriving the kinematic and static, i.e., the kinetostatic, relations among the
various bodies of multibody mechanical systems.

3.2 General Rigid-Body Motion and Its Associ-
ated Screw
In this section we analyze the general motion of a rigid body. Thus, let A

and P be two points of the same rigid body B, the former being a particular
reference point, whereas the latter is an arbitrary point of B, as shown in Fig. 3.1.
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Moreover, the position vector of point A in the original configuration is a, and
the position vector of the same point in the displaced configuration, denoted by
A’, is a’. Similarly, the position vector of point P in the original configuration
is p, while in the displaced configuration B, this point is P/, its position vector
being p’. Furthermore, p’ is to be determined, while a, a’, and p are given,
along with the rotation matrix Q. Vector p — a can be considered to undergo
a rotation Q about point A throughout the motion taking the body from the
original to the final configuration. Since vector p — a is mapped into p’ — a’
under the above rotation, one can write

B/

Figure 3.1: General rigid-body displacement

p —a' =Q(p-a) (3.1)
and hence
p=a +Q(p-a) (3.2)

which is the relationship sought. Moreover, let d4 and dp denote the displace-
ments of A and P, respectively, i.e.,

ds=a' —a, dp=p' —p (3.3)
From eqs.(3.2) and (3.3) one can readily obtain an expression for dp, namely,

dp=a'-p+Q(p—a)
=a'—a-p+Q(p—a)+a
=da+(Q-1)(p—a) (3.4)

What eq.(3.4) states is that the displacement of an arbitrary point P of a rigid
body, of position vector p in an original configuration, is determined by the dis-
placement of one certain point A and the concomitant rotation Q, as depicted
in Fig. 3.2. In this figure, the final configuration B’ is attained via an inter-
mediate configuration B”, attained from B by a pure translation!. Then, B' is
attained from B” by a pure rotation Q, of axis parallel to vector e and of angle
¢. Apparently, once the displacement of P is known, its position vector p’ can
be readily determined. An interesting result in connection with the foregoing
discussion is summarized below:

1A body undergoes a pure translation when all its points move under the same
displacement.
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Figure 3.2: General rigid-body displacement attained by a combination of trans-
lation and rotation

Theorem 3.2.1 Let o rigid body B move under a general displocement, of ro-
tation Q with axis parallel to the unit vector e. Then, the displacements of all
the points of B have the same component along e.

Proof: Multiply both sides of eq.(3.4) by e”, thereby obtaining
e’dp =eTds +e"(Q-1)(p—a)

Now, the second term of the right-hand side of the above equation vanishes
because Qe = e, and hence, Q7 e = e; the said equation thus leads to

erP = erA = do (35)

thereby showing that the displacements of all points of the body have the same
projection dy onto the axis of rotation, q.e.d.

As a consequence of the foregoing result, we have the classical Mozzi-Chasles
Theorem (Mogzzi, 1763; Chasles, 1830; Ceccarelli, 1995), namely,

Theorem 3.2.2 (Mozzi, 1763; Chasles, 1830) Given a rigid body moving
with a general displacement, o set of its points, located on a line L, undergo iden-
tical displacements of minimum magnitude. Moreover, line £ and the minimum-
magnitude displacement are parallel to the azis of the rotation involved, as il-
lustrated in Fig. 3.3.

Proof: The proof is straightforward in light of Theorem 3.2.1, which allows us to
express the displacement of an arbitrary point P as the sum of two orthogonal
components, namely, one parallel to the axis of rotation, independent of P and
denoted by dj—read “d-par”—and one perpendicular to this axis, denoted by
d) —read “d-perp”—i.e.,

dp ':—d” +d; (3.63,)
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e

¢

e

g B

Figure 3.3: The Mozzi-Chasles Theorem

where
dy=ee’dp=doe=dy, d.=(1-ee’)dp (3.6b)

and clearly, dy is a constant, as defined in eq.(3.5), while d| and d are mutually
orthogonal. Indeed, orthogonality is apparent by definition, but is also verified
below:

dj-d =doe’ (1 —eeT)dp =do(e” ~eT)dp =0

Now, by virtue of the orthogonality of the two components of dp, it is apparent
that
ldel® = lldyll? + (ldLl? = d§ + [ldL])?

for the displacement dp of any point of the body. Hence, in order to minimize
||dp|| we have to make {|d ||, and hence, d itself, equal to zero, i.e., we must
have dp parallel to e:

dp = ae

for a certain scalar . That is, the displacements of minimum magnitude of the
body under study are parallel to the axis of Q, thereby proving the first part of
the Mozzi-Chasles Theorem. The second part is also readily proven by noticing
that if P* is a point of minimum displacement magnitude, of position vector
p*, its component perpendicular to the axis of rotation must vanish, and hence,

d = (1 -eel)dp-
=(1-ee")ds+(1-ee")(Q-1)(p*~2) =0

Upon expansion of the above expression for d* , we obtain
(1—eeT)ds+(Q—-1)(p*—a)=0

Now it is apparent that if we define a line £ passing through P* and parallel to
e, then the position vector p* + Ae of any of its points P satisfies the foregoing



3.2 General Rigid-Body Motion and Its Associated Screw 93

equation. As a consequence, all points of minimum displacement magnitude lie
in a line parallel to the axis of rotation of Q, q.e.d.

An important implication of the foregoing theorem is that a rigid body can
attain an arbitrary configuration from a given original one, following a screw-
like motion of axis £ and pitch p, the latter being defined presently. Thus, it
seems appropriate to call £ the screw azis of the rigid-body motion.

Note that dy, as defined in eq.(3.5), is an invariant of the motion at hand.
Thus, associated with a rigid-body motion, one can then define a screw of axis
L and pitch p. Of course, the pitch is defined as

p:@—g_q’;_e or p=27rd0
¢ ¢ ¢

which has units of m/rad or, correspondingly, of m/turn. Moreover, the angle
¢ of the rotation involved can be regarded as one more feature of this motion.
This angle is, in fact, the amplitude associated with the said motion. We will
come across screws in discussing velocities and forces acting on rigid bodies,
along with their pitches and amplitudes. Thus, it is convenient to introduce
this concept at this stage.

(3.7

3.2.1 The Screw of a Rigid-Body Motion

The screw axis £ is totally specified by a given point Py of £ that can be defined,
for example, as that lying closest to the origin, and a unit vector e defining its
direction. Expressions for the position vector pg of Py in terms of a, a’ and Q,
are derived below:
Since Py was defined as the point of £ lying closest to the origin, pg obviously
is perpendicular to e, i.e.,
efpo =0 (3.8)

Moreover, the displacement dg of P, is parallel to the vector of Q, and hence,
is identical to d)| defined in eq.(3.6b), i.e., it satisfies

(Q-1)do =0

where dg can be expressed using the general expression for the displacement,
eq.(3.4), namely,

do=ds+(Q—-1)(po —a) (3.9a)
Now, since dg is identical to d, we have, from eq.(3.6b),
dy + (Q - 1)(P0 - a) = d” = eerO

But from Theorem 3.2.1,
e’dy =e’dy

and so
ds+(Q—1)(po—a) =eeldy
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or, after rearranging terms,
(Q—=1)po = (Q — 1)a— (1—eeT)ds (3.9b)

Furthermore, in order to find an expression for pg, eq.(3.8) is adjoined to
eq.(3.9b), thereby obtaining

Ap() =b (310)
where A is a 4 x 3 matrix and b is a 4-dimensional vector, both given by
- _ A1 — oaT
A= [QeT 1} , b= [(Q 1)a (()1 ee’)da (3.11)

Equation (3.10) cannot be solved for pg directly, because A is not a square
matrix. In fact, that equation represents an overdetermined system of four
equations and three unknowns. Thus, in general, that system does not admit
a solution. However, the four equations are compatible, and hence, in this
particular case, a solution of that equation, which turns out to be unique, can
be determined. In fact, if both sides of eq.(3.10) are multiplied from the left by
AT, we have

ATApo=ATb (3.12)

Moreover, if the product ATA, which is a 3 x 3 matrix, is invertible, then po
can be computed from eq.(3.12). In fact, the said product is not only invertible,
but also admits an inverse that is rather simple to derive, as shown below. Now
the rotation matrix Q is recalled in terms of its natural invariants, namely, the
unit vector e parallel to its axis of rotation and the angle of rotation ¢ about
this axis, as given in eq.(2.48), reproduced below for quick reference:

Q = ee” + cosp(1 — ee”) + singE

where 1 represents the 3 x 3 identity matrix and E the cross-product matriz of
e, as introduced in eq.(2.37). Further, eq.(2.48) is substituted into eq.(3.11),
which yields

ATA =2(1 - cos$)1 — (1 — 2cos p)ee” (3.13)

It is now apparent that the foregoing product is a linear combination of 1 and
eeT. This suggests that its inverse is very likely a linear combination of these
two matrices as well. If this is in fact true, then one can write

(ATA)™! = ol + Bee” (3.14)

coefficients & and 3 being determined from the condition that the product of
AT A by its inverse should be 1, which leads to

S S b Ll
&= S o)’ B = 301 = cos 6) (3.15)
and hence,
(ATA)! 1 1-2cos¢p (3.16)

- 2(1— cosqS)1 * 2(1 - cosgb)ee
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On the other hand, from eq.(3.11),
ATb=(Q-1)T[(Q-1)a—d4] (3.17)

Upon solving eq.(3.12) for py and substituting relations (3.16) and (3.17) into
the expression thus resulting, one finally obtains

_ (@-1)7(Qa-2)
2(1 —cosg) '’

for ¢ #0 (3.18)

Apparently, pg can be computed as long as ¢ # 0. If § = 0, then we are in
the presence of a pure translation, all the points of the body undergoing the
same displacement. Therefore, any point of the body is of minimum-magnitude
displacement.

We have thus defined aline £ of the rigid body under study that is completely
defined by its point P, of position vector pg and a unit vector e determining its
direction. Moreover, we have already defined the pitch of the associated motion,
eq.(3.7). The line thus defined, along with the pitch, determines the screw of
the motion under study.

3.2.2 The Pliicker Coordinates of a Line

Alternatively, the screw axis, and any line for that matter, can be defined more
conveniently by its Pliicker coordinates. In motivating this concept, we recall
the equation of a line £ passing through two points P; and P, of position vectors
p1 and p2, as shown in Fig. 3.4.

! 0

Figure 3.4: A line £ passing through two points

If point P lies in £, then, it must be collinear with P; and P», a property
that is expressed as

(p2—p1)x(P—p1)=0
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or upon expansion,
(P2—P1) XPp+P1 X (P2—P1) =0 (3.19)

If we now introduce the cross-product matrices P; and P2 of vectors p; and p»
in the above equation, we have an alternative expression for the equation of the
line, namely,

P2 -Pi)p+tp1x(P2—p1) =0

The above equation can be regarded as a linear equation in the homogeneous
coordinates of point P, namely,

[P2—P1 p1 X (p2—Pp1)] [I{] =0 (3.20)

It is now apparent that the line is defined completely by two vectors, the differ-
ence ps — p1, or its cross-product matrix for that matter, and the cross product
p1 X (P2 — p1). We will thus define a 6-dimensional array -+, containing these
two vectors, namely,

v = [pl 52(;2‘)_11)1)] (3.21)

whose six scalar entries are the Pliicker coordinates of £. Moreover, if we let

P2 —P1

e= ——, n=p;Xxe 3.22
Tz =i (3.2

then we can write
e
70 = 2= pall [ ]

The six scalar entries of the above array are the normalized Pliicker coordinates
of £. Vector e determines the direction of £, while n determines its location; n
can be interpreted as the moment of a unit force parallel to e and of line of action
L. Hence, n is called the moment of L. Henceforth, only the normalized Pliicker
coordinates of lines will be used. For brevity, we will refer to these simply as
the Pliicker coordinates of the line under study. The Pliicker coordinates thus
defined will be stored in a Pliicker array & in the form

e
K= [n] (3.23)
where for conciseness, we have dropped the subscript £, while assuming that
the line under discussion is self-evident.

Note, however, that the six components of the Pliicker array, i.e., the Pliicker
coordinates of line L, are not independent, for they obey

ece=1, n-e=0 (3.24)

and hence, any line £ has only four independent Pliicker coordinates. In the
foregoing paragraphs, we have talked about the Pliicker array of a line, and
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not about the Pliicker vector; the reason for this distinction is given below.
The set of Pliicker arrays is a clear example of an array of real numbers not
constituting a vector space. What disables Pliicker arrays from being vectors
are the two constraints that their components must satisfy, namely, (¢) the sum
of the squares of the first three components of a Pliicker array is unity, and (47)
the unit vector of a line is normal to the moment of the line. Nevertheless, we can
perform with Pliicker arrays certain operations that pertain to vectors, as long as
we keep in mind the essential differences. For example, we can multiply Pliicker
arrays by matrices of the suitable dimension, with entries having appropriate
units, as we will show presently.

Tt must be pointed out that a Pliicker array is dependent upon the location
of the point with respect to which the moment of the line is measured. Indeed,
let k4 and kp denote the Pliicker arrays of the same line £ when its moment
is measured at points A and B, respectively. Moreover, this line passes through
a point P of position vector p for a particular origin O. Now, let the moment
of £ with respect to A and B be denoted by n4 and ng, respectively, i.e.,

na=(p—a)xe, ng=(p—b)xe (3.25)
and hence,
e e
caz] o] mem 2] -
Obviously,
ng~ng=(a—b)xe (3.27)
i.e.,
= © 3.28
kB = ng+(a—b)xe (3.28)
which can be rewritten as
kg =Uky (3.29a)
with the 6 x 6 matrix U defined as
_ 1 (@)
o=[,15 ] (a2

while A and B are, respectively, the cross-product matrices of vectors a and b,
and O denotes the 3 x 3 zero matrix. Given the lower-triangular structure of
matrix U, its determinant is simply the product of its diagonal entries, which
are all unity. Hence,

det(U) = 1 (3.30)

U thus belonging to the unimodular group of 6 x 6 matrices. These matrices
are rather simple to invert. In fact, as one can readily prove,

U!= [B_I_A (1)] (3.31)
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Relations (3.29a & b) can then be called the Plicker-coordinate transfer formu-
las.
Note that upon multiplication of both sides of eq.(3.27) by (a — b),

(a—b)Tng =(a—b)Tny (3.32)

and hence, the moments of the same line £ with respect to two points are not
independent, for they have the same component along the line joining the two
points.

A special case of a line, of interest in kinematics, is a line at infinity. This
is a line with undefined orientation, but with a defined direction of its moment;
this moment is, moreover, independent of the point with respect to which it is
measured. Very informally, the Pliicker coordinates of a line at infinity can be
derived from the general expression, eq.(3.23), if we rewrite it in the form

]

where clearly n/||n|| is a unit vector; henceforth, this vector will be denoted by
f. Now let us take the limit of the above expression as P goes to infinity, i.e.,
when ||p|| = 00, and consequently, as ||n|| = co. Thus,

lim k= ( lim ||n||> ( lim [e/||n||])
lInjl—c0 Jlnjj—oc0 Inll»oo | £
. A 0
™ = <||n1|11130o”n”) [f]

The 6-dimensional array appearing in the above equation is defined as the
Pliicker array of a line at infinity, Ko, namely,

whence

Koo = [‘f’] (3.33)

Note that a line at infinity of unit moment £ can be thought of as being a
line lying in a plane perpendicular to the unit vector f, but otherwise with an
indefinite location in the plane, except that it is an infinitely large distance from
the origin. Thus, lines at infinity vary only in the orientation of the plane in
which they lie.

3.2.3 The Pose of a Rigid Body

A possible form of describing a general rigid-body motion, then, is through a
set of eight real numbers, namely, the six Pliicker coordinates of its screw axis,
its pitch, and its amplitude, i.e., its angle. Hence, e rigid-body motion is fully
described by siz independent parameters. Moreover, the pitch can attain values
from —oo to +00. Alternatively, a rigid-body displacement can be described
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by seven dependent parameters as follows: four invariants of the concomitant
rotation—the linear invariants, the natural invariants, or the Euler—-Rodrigues
parameters, introduced in Section 2.3—and the three components of the dis-
placement of an arbitrary point. Since those invariants are not independent,
but subject to one constraint, this description consistently involves six indepen-
dent parameters. Thus, let a rigid body undergo a general motion, of rotation Q
from a reference configuration Cq. If a landmark point A of the body undergoes
a displacement d 4, then the pose array, or simply the pose s, of the body in
configuration C is defined as a 7-dimensional array, namely,

s= | q (3.34)

where the 3-dimensional vector q and the scalar gy are any four invariants of
Q. For example, if these are the Euler-Rodrigues parameters, then

q= sin(%)e, Q@ = cos(%)

If alternatively, we work with the linear invariants, then

q = (singple, qo =cos¢

and, of course, if we work instead with the natural invariants, then

q=e, Q=¢

In the first two cases, the constraint mentioned above is
lall? + a5 =1 (3.35)

In the last case, the constraint is simply
lef> =1 (3.36)

Notice that the pose of a rigid body is an array of numbers quantifying the
displacement of the body from a reference configuration Cy to a current config-
uration C. As such, then, the pose is a relative concept.

An important problem in kinematics is the computation of the screw pa-
rameters, i.e., the components of s, as given in eq.(3.34), from coordinate mea-
surements over a certain finite set of points. From the foregoing discussion, it
is clear that the computation of the attitude of a rigid body, given by matrix Q
or its invariants, is crucial in solving this problem. Moreover, besides its theo-
retical importance, this problem, known as pose estimation, has also practical
relevance. Shown in Fig. 3.5 is the helmet-mounted display system used in flight
simulators. The helmet is supplied with a set of LEDs (light-emitting diodes)
that emit infrared light signals at different frequencies each. These signals are
then picked up by two cameras, from whose images the Cartesian coordinates of
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the LED centers are inferred. With these coordinates and knowledge of the LED
pattern, the attitude of the pilot’s head is determined from the rotation matrix
Q. Moreover, with this information and that provided via sensors mounted on
the lenses, the position of the center of the pupil of the pilot’s eyes is then esti-
mated. This position, then, indicates on which part of his or her visual field the
pilot’s eyes are focusing. In this way, a high-resolution graphics monitor syn-
thesizes the image that the pilot would be viewing with a high level of detail.
The rest of the visual field is rendered as a rather blurred image, in order to
allocate computer resources where it really matters.

Figure 3.5: Helmet-mounted display system (courtesy of CAE Electronics Ltd.,
St.-Laurent, Quebec, Canada)

A straightforward method of computing the screw parameters consists in
regarding the motion as follows: Choose a certain point A of the body, of
position vector a, and track it as the body moves to a displaced configuration,
at which point A moves to A', of position vector a’. Assume that the body
reaches the displaced configuration B’, passing through an intermediate one
B”, which is attained by a pure translation, as depicted in Fig. 3.2. Next,
configuration B’ is reached by rotating the body about point 4’, as indicated in
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Figure 3.6: Decomposition of the displacement of a rigid body

Fig. 3.6.

Matrix Q can now be readily determined. To do this, define three points of
the body, Py, P, and Ps, in such a way that the three vectors defined below
are orthonormal and form a right-hand system:

e Em, e Em, e3 = A_P3> (3.37)
e;-e; = (Sij, i,j = 1,2,3, €3 —e€; X e (338)

where J;; is the Kronecker delta, defined as 1 if i = j, and as 0 otherwise. Now,
let the set {e;}] be labeled {e}}} and {e/}} in configurations B’ and B", re-
spectively. Moreover, let ¢;; denote the entries of the matrix representation of
the rotation Q in a frame X, Y, Z with origin at A and such that the forego-
ing axes are parallel to vectors e1, es, and es, respectively. It is clear, from

Definition 2.2.1, that

Gij = €; - €] (3.39)

i.e.,

ej-e] e -ep, e -e}

/ } /
[Q]=|e2-€e] ex-e) ex-ef (3.40)

e;-e} ez-e, e3-e}

Note that all e; and e appearing in eq.(3.40) must be represented in the same
coordinate frame. Once Q is determined, computing the remaining screw pa-
rameters is straightforward. One can use, for example, eq.(3.18) to determine
the point of the screw axis that lies closest to the origin, which would thus allow
one to compute the Pliicker coordinates of the screw axis.
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3.3 Rotation of a Rigid Body About a Fixed
Point

In this section, the motion of a rigid body having a point fixed is analyzed.
This motion is fully described by a rotation matrix Q that is proper orthogonal.
Now, Q will be assumed to be a smooth function of time, and hence, the position
vector of a point P in an original configuration, denoted here by pg, is mapped
smoothly into a new vector p(¢), namely,

p(t) = Q(t)po (3.41)

The velocity of P is computed by differentiating both sides of eq.(3.41) with
respect to time, thus obtaining

p(t) = Q(t)po (3.42)

which is not a very useful expression, because it requires knowledge of the
original position of P. An alternative expression can be derived if eq.(3.41)
is solved for py and the expression thus resulting is substituted into eq.(3.42),
which yields

p=QQ"p (3.43)

where the argument ¢ has been dropped for the sake of simplicity, but one must
keep in mind that all quantities are now time-varying. The product QQ7 is
known as the angular-velocity matriz of the rigid-body motion and is denoted
by Q, i.e.,

Q=QQ7 (3.44)

As a consequence of the orthogonality of Q, one has a basic result, namely,
Theorem 3.3.1 The angular-velocity matriz is skew-symmetric.

Proof: This follows directly from definition (3.44).

In order to derive the angular-velocity vector of a rigid-body motion, we recall
the concept of azial vector, or simply vector, of a 3 x 3 matrix, introduced in
Subsection 2.3.3. Thus, the angular-velocity vector w of the rigid-body motion
under study is defined as the vector of €2, i.e.,

w = vect(£2) (3.45)
and hence, eq.(3.43) can be written as
P=Op=wxp (3.46)

from which it is apparent that the velocity of any point P of a body moving with
a point O fized is perpendicular to line OP.
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3.4 General Instantaneous Motion of a Rigid
Body

If a rigid body now undergoes the most general motion, none of its points
remains fixed, and the position vector of any of these, P, in a displaced config-
uration is given by eq.(3.2). Let ag and pg denote the position vectors of points
A and P of Section 3.2, respectively, in the reference configuration Co, a(t) and
p(t) being the position vectors of the same points in the displaced configuration
C. Moreover, if Q(t) denotes the rotation matrix, then

p(t) = a(t) + Q(t)(po — a0) (3.47)

Now, the velocity of P is computed by differentiating both sides of eq.(3.47)
with respect to time, thus obtaining

p(t) = a(t) + Q(t)(Po — a0) (3.48)

which again, as expression (3.48), is not very useful, for it requires the values
of the position vectors of A and P in the original configuration. However, if
eq.(3.47) is solved for pg — ag and the expression thus resulting is substituted
into eq.(3.48), we obtain

p=a+Q(p—a) (3.49)

or in terms of the angular-velocity vector,
p=a+wx(p—a) (3.50)

where the argument ¢ has been dropped for brevity but is implicit, since all
variables of the foregoing equation are now functions of time. Furthermore,
from eq.(3.50), it is apparent that

(p-a)-(p—a)=0 (3.51)
which can be summarized as

Theorem 3.4.1 The relative velocity of two points of the same rigid body is
perpendicular to the line joining them.

Moreover, similar to the outcome of Theorem 3.2.1, one now has an addi-
tional result that is derived upon dot-multiplying both sides of eq.(3.50) by w,
namely,

w-p=w-a

and hence,

Corollary 3.4.1 The projections of the velocities of all the points of a rigid
body onto the angular-velocity vector are identical.

Furthermore, similar to the Mozzi-Chasles Theorem, we have now
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Theorem 3.4.2 Given a rigid body under general motion, o set of its points
located on a line L' undergoes the identical minimum-magnitude velocity vo
parallel to the angular velocity.

Definition 3.4.1 The line containing the points of a rigid body undergoing
minimum-magnitude velocities is called the instant screw axis (ISA) of the body
under the given motion.

3.4.1 The Instant Screw of a Rigid-Body Motion

From Theorem 3.4.2, the instantaneous motion of a body is equivalent to that
of the bolt of a screw of axis £', the ISA. As the body moves, the ISA changes,
and the motion of the body is called an instantaneous screw. Moreover, since
vg is parallel to w, it can be written in the form

w
Vo = vor— (3.52)
[l
where v is a scalar quantity denoting the signed magnitude of vy and bears the
sign of vg - w. Furthermore, the pitch p’ of the instantaneous screw is defined

as .
, v _prw ) — 2@

p=—=7— or p=—">
el [lwl|? [lwl|
which thus bears units of m/rad or, correspondingly, of m/turn.

Again, the ISA £’ can be specified uniquely through its Pliicker coordinates,
stored in the pg array defined as

(3.53)

el
P = [n,] (354)
where e’ and n' are, respectively, the unit vector defining the direction of £’
and its moment about the origin, i.e.,

! w ! !

e Tl n=pxe (3.55)

p being the position vector of any point of the ISA. Clearly, €’ is defined uniquely
but becomes trivial when the rigid body instantaneously undergoes a pure trans-
lation, i.e., a motion during which, instantaneously, w = 0 and all body-points
move with the same velocity vo. In this case, €' is defined as the unit vector
parallel to vo. Thus, an instantaneous rigid-body motion is defined by a line £’,
a pitch p/, and an amplitude ||w||. Such a motion is, then, fully determined by
six independent parameters, namely, the four independent Pliicker coordinates
of L', its pitch, and its amplitude. A line supplied with a pitch is, in general,
called a screw; a screw supplied with an amplitude representing the magnitude
of an angular velocity provides the representation of an instantaneous rigid-body
motion that is sometimes called the twist, an item that will be discussed in more
detail below.
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Hence, the instantaneous screw is fully defined by six independent real num-
bers. Moreover, such as in the case of the screw motion, the pitch of the instan-
taneous screw can attain values from —oo to +o00.

The ISA can be alternatively described in terms of the position vector pg of
its point lying closest to the origin. Expressions for p{, in terms of the position
and the velocity of an arbitrary body-point and the angular velocity are derived
below. To this end, we decompose p into two orthogonal components, p|| and
P.1, along and transverse to the angular-velocity vector, respectively. Hence, a
is first decomposed into two such orthogonal components, 4, and a, , the former
being parallel, the latter normal to the ISA, i.e.,

a=aj+a, (3.56)

These orthogonal components are given as

] ) w wwT wwT\ . 1 .
j=a-w = a aLE<1—W>a:—WQa (3.57)

In the derivation of eq.(3.57) we have used the identity introduced in eq.(2.39),
namely,
Q? = ww? - ||w|”1 (3.58)

Upon substitution of eq.(3.57) into eq.(3.50), we obtain

L wwT 1 .
P= Wa —Wﬂ2a + Q(p — a) (359)
P ;:

Of the three components of p, the first, henceforth referred to as its axial com-
ponent, is parallel, the last two being normal to w. The sum of the last two
components is referred to as the normal component of p. From eq.(3.59) it
is apparent that the axial component is independent of p, while the normal
component is a linear function of p. An obvious question now arises: For an
arbitrary motion, is it possible to find o certain point of position vector p whose
velocity normal component vanishes? The vanishing of the normal component
obviously implies the minimization of the magnitude of p. The condition under
which this happens can now be stated as

pL=0
or

Q(p—a) — —1—292 a=0 (3.60)

[lwl]

which can be further expressed as a vector equation linear in p, namely,

1
Qp=Q (a + —-——Qé) 3.61
P (3.61)
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or
Qp-r)=0 (3.62a)
with r defined as 1
r=a+ —-0a (3.62b)
llwll?
and hence, a possible solution of the foregoing problem is
1
p=r=a+-——Qa (3.63)
llwl]?

However, this solution is not unique, for eq.(3.62a) does not require that p —r
be zero, only that this difference lie in the nullspace of €2, i.e., that p — r be
linearly dependent with w. In other words, if a vector aw is added to p as
given in eq.(3.63), then the sum also satisfies eq.(3.61). It is then apparent that
eq.(3.61) does not determine a single point whose normal velocity component
vanishes, but a set of points lying on the ISA, and thus, other solutions are
possible. For example, we can find the point of the ISA lying closest to the
origin. To this end, let p§ be the position vector of that point. This vector is
obviously perpendicular to w, i.e.,

wlph =0 (3.64)

Next, eq.(3.61) is rewritten for py, and eq.(3.64) is adjoined to it, thereby de-
riving an expanded linear system of equations, namely,

Apy=Db (3.65)
where A is a 4 X 3 matrix and b is a 4-dimensional vector, both being given
below: Q N cad

A= [:}T} b= [ at (/lwifera (3.66)

This system is of the same nature as that appearing in eq.(3.10), and hence, it
can be solved for pj, following the same procedure. Thus, both sides of eq.(3.65)
are multiplied from the left by AT, thereby obtaining

ATAp, =ATb (3.67)
where
ATA = 07TQ + wwT = —Q? + wwT (3.68)

Moreover, from eq.(3.58), the rightmost side of the foregoing relation becomes
lw]|?1, and hence, the matrix coefficient of the left-hand side of eq.(3.67) and
the right-hand side of the same equation reduce, respectively, to

ATA = |lw|?1, ATb=Q(a - Qa) (3.69)

Upon substitution of eq.(3.69) into eq.(3.67) and further solving for p{, the
desired expression is derived:

y_Q@-0a) wx(a-wxa)
Po= ™ =7 P

(3.70)
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Thus, the instantaneous screw is fully defined by an alternative set of six
independent scalars, namely, the three components of its angular velocity w and
the three components of the velocity of an arbitrary body point A, denoted by
a. As in the case of the screw motion, we can also represent the instantaneous
screw by a line and two additional parameters, as we explain below.

3.4.2 The Twist of a Rigid Body

A line, as we saw earlier, is fully defined by its 6-dimensional Plicker array,
which contains only four independent components. Now, if a pitch p is added
as a fifth feature to the line or correspondingly, to its Pliicker array, we obtain
a screw s, namely,

P Xe-+pe

An amplitude is any scalar A multiplying the foregoing screw. The am-
plitude produces a twist or a wrench, to be discussed presently, depending on
its units. The twist or the wrench thus defined can be regarded as an eight-
parameter array. These eight parameters, of which only six are independent, are
the amplitude, the pitch, and the six Pliicker coordinates of the associated line.
Clearly, a twist or a wrench is defined completely by six independent real num-
bers. More generally, a twist can be regarded as a 6-dimensional array defining
completely the velocity field of a rigid body; it comprises the three components
of the angular velocity and the three components of the velocity of any of the
points of the body.

Below we elaborate on the foregoing concepts. Upon multiplication of the
screw appearing in eq.(3.71) by the amplitude A representing the magnitude of
an angular velocity, we obtain a twist t, namely,

¢ = Ae
T | p x (Ae) + p(Ae)

where the product Ae can be readily identified as the angular velocity w parallel
to vector e, of magnitude A. Moreover, the lower part of t can be readily
identified with the velocity of a point of a rigid body. Indeed, if we regard
the line £ and point O as sets of points of a rigid body B moving with an
angular velocity w and such that point P moves with a velocity pw parallel to
the angular velocity, then the lower vector of t, denoted by v, represents the
velocity of point O, i.e.,

sz[ N ] (3.71)

V=—WwXPp-+pw
We can thus express the twist t as

v

t= [w] (3.72)

If the pitch is zero, the twist is a pure rotation; if infinite, the twist is a pure
translation, in which case the twist is

t= m = vl m (3.73)
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Then, the screw of infinite pitch s is defined as the 6-dimensional array ap-
pearing in the above equation, namely,

Soo = [0] (3.74)

Note that this screw array is identical to the Pliicker array of a line at infinity
lying in a plane of unit normal e, as displayed in eq.(3.33).

The twist array, as defined in eq.(3.72), with w on top, represents the ray
coordinates of the twist. An exchange of the order of the two Cartesian vectors
of this array, in turn, gives rise to the axis coordinates of the twist.

The foregoing twist was also termed motor by Everett (1875). As Phillips
(1990) points out, the word motor is an abbreviation of moment and vector. An
extensive introduction into motor algebra was published by von Mises (1924), a
work that is now available in English (von Mises, 1996). Roth (1984), in turn,
provided a summary of these concepts, as applicable to robotics. The foregoing
array goes also by other names, such as the German Kinemate or the French
torseur cinémaltique.

The relationships between the angular-velocity vector and the time deriva-
tives of the invariants of the associated rotation are linear. Indeed, let the three
sets of four invariants of rotation, namely, the natural invariants, the linear
invariants, and the Euler-Rodrigues parameters be grouped in the 4-dimensional
arrays v, A, and 71, respectively, i.e.,

o=[o] =[] =[] em

We then have the linear relations derived in full detail elsewhere (Angeles, 1988),
and outlined in Appendix A for quick reference, namely,

v=Nw, A=Lw, 7=Huw (3.76a)
with N, L, and H defined as

N = [[Sin ¢/(2(1 = cos ¢))](1 — eeT) — (1/2)E] , (3.76b)

_ (/@)1 - Q] .

L= [ —(sin ¢)e” } ’ (3.76¢)
_ 1 Tcos(¢/2)1 ~sin(¢/2)E

H= 5 [ ~sin(g/2)eT ] (3.76d)

where, it is recalled, tr(-) denotes the trace of its square matrix argument (-),
i.e., the sum of the diagonal entries of that matrix.

The inverse relations of those shown in eqs.(3.76a) are to be derived by
resorting to the approach introduced when solving eq.(3.65) for pj, thereby
obtaining _ .

w=Ni=LA=Hgp (3.77a)
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the 3 x 4 matrices ﬁ, f;, and H being defined below:

N =[(sin¢)1+ (1 —cos))E e], (3.77b)
L=[1+][sing)/(1+cosd)]E —[(sing)/(1+cosd)le], (3.77¢c)
H = 2[[cos(¢/2)]1 + [sin(¢/2)]E  —[sin($/2)]e] (3.77d)

Caveat The angular velocity vector is not a time-derivative, i.e., no Cartesian
vector exists whose time-derivative is the angular-velocity vector.

However, matrices N, L, and H of eqgs.(3.76b—d) can be regarded as integra-
tion factors that yield time-derivatives.

Now we can write the relationship between the twist and the time-rate of
change of the 7-dimensional pose array s, namely,

§=Tt (3.78)

T = [g 0143] (3.79)

in which O and O,43; are the 3 x 3 and the 4 x 3 zero matrices, while 1 is the
3 x 3 identity matrix and F is, correspondingly, N, L, or H, depending upon
the invariant representation chosen for the rotation. The inverse relationship of
€q.(3.78) takes the form

where

t =S5 (3.80a)

S= [01‘:4 (1)] (3.80b)

in which O34 is the 3 x 4 zero matrix. Moreover, F is one of 1<T, f, or ﬁ, de-
pending on the rotation representation adopted, namely, the natural invariants,
the linear invariants, or the Euler-Rodrigues parameters, respectively.

A formula that relates the twist of the same rigid body at two different points
is now derived. Let A and P be two arbitrary points of a rigid body. The twist
at each of these points is defined as

ty = [“,‘;] , tp= [“";} (3.81)

Moreover, eq.(3.50) can be rewritten as

where

vp=vat+(a—p) xw (3.82)
Combining eq.(3.81) with eq.(3.82) yields
tp = Uty (3.83a)
where
_ 1 O
U= [A_P 1] (3.83b)

with the 6 x 6 matrix U defined as in eq.(3.29b), while A and P denote the
cross-product matrices of vectors a and p, respectively. Thus, egs.(3.83a & b)
can be fairly called the twist-transfer formulas.
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3.5 Acceleration Analysis of Rigid-Body Motions
Upon differentiation of both sides of eq.(3.49) with respect to time, one obtains
P=4+Q(p—a)+Qp-a) (3.84)

Now, eq.(3.49) is solved for p—a, and the expression thus resulting is substituted
into eq.(3.84), thereby obtaining

p=a+(Q+Q%(p—a) (3.85)

where the matrix sum in parentheses is termed the angular-acceleration matriz
of the rigid-body motion and is represented by W, i.e.,

W= Q4 Q2 (3.86)

Apparently, the first term of the right-hand side of eq.(3.86) is skew-symmetric,
whereas the second one is symmetric. Thus,

vect(W) = vect(2) = w (3.87)

w being termed the angular-acceleration vector of the rigid-body motion. We
have now an interesting result, namely,

tr(W) = tr(Q?) = tr(—||w||*1 + ww?)
= —|lw|*tr(1) + w - w = —2||w||? (3.88)

Moreover, eq.(3.85) can be written as
P=d+wx(p—a)+wxjwx(p—a) (3.89)

On the other hand, the time derivative of t, henceforth referred to as the twist
rate, is displayed below:

- lw

i= [v] (3.90)
in which v is the acceleration of a point of the body. The relationship be-
tween the twist rate and the second time derivative of the screw is derived by
differentiation of both sides of eq.(3.78), which yields

§=Ti+Tt (3.91)
where o
N 43
T= [ 6 o ] (3.92)

and F is one of N, L, or H, accordingly. The inverse relationship of eq.(3.91)
is derived by differentiating both sides of eq.(3.80a) with respect to time, which
yields )

t = 8§ + S5 (3.93)
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where 5
§= [ F 0} (3.94)
O3, O

with O and O34 already defined in eq.(3.80b) as the 3 x 3 and the 3 x 4 zero

matrices, respectively, while F is one of ﬁ, i, or ﬁ, according with the type of
rotation representation at hand.
Before we take to differentiating the foregoing matrices, we introduce a few

definitions: Let
)\E[u], nz[r] (3.95a)

ie.,

u=singe, ug=cos¢, r=sin <g) e, Trg=cos <§) (3.95b)

Thus, the time derivatives sought take on the forms

N = Z(l—lTsaﬁ [E] (3.96a)

- (1/2[16:(Q) - Q) ]
~(1/2)w"[1tx(Q) ~ Q7]

_ [ =w-w1-(1/2)0Q
B [—(1/2)wT[1tr(Q) - QT]] (3.96b)
H= % [r.oii‘_T R] (3.96¢)

where we have used the identities below, which are derived in Appendix A.
tr(Q) = tr(QQ) = —2wu (3.96d)
Furthermore, R denotes the cross-product matrix of r, and B is defined as

= —2(e-w)l+2(3 —cosp)(e-w)ee” — 2(1 + sin p)weT

—(2cos ¢ + sin plew” — (sin ¢)[Q ~ (e - w)E] (3.96¢)

Moreover,
N = [¢(cos )1 + (sinO)E  &] (3.97a)
L=[V/D a] (3.97b)

H=[rl+R —f] (3.97¢)
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where V and D are defined below:
V=U- (i’ +ua?) — %(U — uuT) (3.97d)
D=1+uq (3.97¢)

with U denoting, now, the cross-product matrix of u.

3.6 Rigid-Body Motion Referred to Moving Co-
ordinate Axes

Although in kinematics no “preferred” coordinate system exists, in dynamics
the governing equations of rigid-body motions are valid only in inertial frames.
An inertial frame can be defined as a coordinate system that translates with
uniform velocity and constant orientation with respect to the stars. Thus, it is
important to refer vectors and matrices to inertial frames, but sometimes it is
not possible to do so directly. For instance, a space vessel can be supplied with
instruments to measure the velocity and the acceleration of a satellite drifting
in space, but the measurements taken from the space vessel will be referred to
a coordinate frame fixed to it, which is not inertial. If the motion of the vessel
with respect to an inertial coordinate frame is recorded, e.g., from an Earth-
based station, then the acceleration of the satellite with respect to an inertial
frame can be computed using the foregoing information. How to do this is the
subject of this section.

In the realm of kinematics, it is not necessary to distinguish between inertial
and noninertial coordinate frames, and hence, it will suffice to call the coordinate
systems involved fized and moving. Thus, consider the fixed coordinate frame
X, Y, Z, which will be labeled F, and the moving coordinate frame X, Y, Z,
which will be labeled M, both being depicted in Fig. 3.7. Moreover, let Q be the
rotation matrix taking frame F into the orientation of M, and o the position
vector of the origin of M from the origin of F. Further, let p be the position
vector of point P from the origin of F and p the position vector of the same
point from the origin of M. From Fig. 3.7 one has

[plr =[olr +[plr (3.98)
where it will be assumed that p is not available in frame F, but in M. Hence,
[plr =[Qlr[p]m (3.99)

Substitution of eq.(3.99) into eq.(3.98) yields
(plr =[o]r +[Qlr{p]Im (3.100)

Now, in order to compute the velocity of P, both sides of eq.(3.100) are
differentiated with respect to time, which leads to

[plr =10l +[Qlr[plMm + [Qlx[pIMm (3.101)
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Figure 3.7: Fixed and moving coordinate frames

Furthermore, from the definition of 2, eq.(3.44), we have

[QlF = [Q]#[Q]F (3.102)

Upon substitution of the foregoing relation into eq.(3.101), we obtain

[Pplr=[0]r+[Q]A[Qlxr[p]IMm +[Q]r[A]lMm (3.103)

which is an expression for the velocity of P in F in terms of the velocity of P in
M and the twist of M with respect to F. Next, the acceleration of P in [F is
derived by differentiation of both sides of eq.(3.103) with respect to time, which
yields

[Blr = [6]r+ [QF[Q]FpIm + [ Qlrl 011

+H QA QIF[PIM +[QlF[pIMm + [QIF[ D] M (3.104)

Further, upon substitution of identity (3.102) into eq.(3.104), we obtain

[B]7 = [8]7+ ([Q#+ (]2 Q)#[p]m
+2[QF[QlF[plMm + [QlF[ A (3.105)

Moreover, from the results of Section 3.5, it is apparent that the first two
terms of the right-hand side of eq.(3.105) represent the acceleration of P as a
point of M, whereas the fourth term is the acceleration of P measured from M.
The third term is known as the Coriolis acceleration, for it was first pointed out
by the French mathematician Gustave Gaspard Coriolis (1835).
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f

(a) (b)

Figure 3.8: Equivalent systems of force and moment acting on a rigid body

3.7 Static Analysis of Rigid Bodies

Germane to the velocity analysis of rigid bodies is their force-and-moment anal-
ysis. In fact, striking similarities exist between the velocity relations associated
with rigid bodies and the forces and moments acting on them. From elementary
statics it is known that the resultant of all external actions, i.e., forces and mo-
ments, exerted on a rigid body can be reduced to a force f acting at a point, say
A, and a moment n 4. Alternatively, the aforementioned force f can be defined
as acting at an arbitrary point P of the body, as depicted in Fig. 3.8, but then
the resultant moment np changes correspondingly.

In order to establish a relationship between n4 and np, the moment of the
first system of force and moment with respect to point P is equated to the
moment about the same point of the second system, thus obtaining

np=ns+(a—-p)xf (3.106)
which can be rewritten as
np=n4+f x (p — a) (3.107)

whence the analogy with eq.(3.50) is apparent. Indeed, np and n4 of eq.(3.107)
play the role of the velocities of P and A4, p and a, respectively, whereas f of
eq.(3.107) plays the role of w of eq.(3.50). Thus, similar to Theorem 3.4.2, one
has

Theorem 3.7.1 For a given system of forces and moments acting on a rigid
body, if the resultant force is applied at any point of a particular line L", then
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the resultant moment is of minimum magnitude. Moreover, that minimum-
magnitude moment is parallel to the resultant force.

Hence, the resultant of the system of forces and moments is equivalent to
a force f acting at a point of £" and a moment n, with both f and n parallel
to L”. Paraphrasing the definition of the ISA, one defines line £" as the azis
of the wrench acting on the body. Let ng be the minimum-magnitude moment.
Paraphrasing eq.(3.52) in turn, ng can be expressed as

l’lp'f

f
ng =nNge, No= —r=— (3.108)
Jial I1£]]
Moreover, the pitch of the wrench, p", is defined as
.f . f
n="To _Dnp-1 P = 2rop - £ (3.109)

p =t
el el €117

which, again, has units of m/rad or correspondingly, of m/turn. Of course, the
wrench axis can be defined by its Pliicker array, pge», i.e.,

1

e"] , €'= ﬁ, n" =pxe’ (3.110)

Py = [n

where e” is the unit vector parallel to £, n” is the moment of £" about the
origin, and p is the position vector of any point on L.

The wrench axis is fully specified, then, by the direction of f and point Py of
position vector py lying closest to the origin, which can be derived by analogy
with eq.(3.70), namely, as

1
Py = Wf x (ng —f x a) (3.111)

Similar to Theorem 3.4.1, one has

Theorem 3.7.2 Consider o system of moments and forces acting on a rigid
body, with the resultant force applied at an arbitrary point of the body. The pro-
jection of the resultant moment onto the wrench azis is identical for all points.

From the foregoing discussion, then, the wrench applied to a rigid body can
be fully specified by the resultant force f acting at an arbitrary point P and
the associated moment, np. We shall derive presently the counterpart of the 6-
dimensional array of the twist, namely, the wrench array. Upon multiplication of
the screw of eq.(3.71) by an amplitude A with units of force, what we will obtain
would be a wrench w, i.e., a 6-dimensional array with its first three components
having units of force and its last components units of moment. We would like to
be able to obtain the power developed by the wrench on the body moving with
the twist t by a simple inner product of the two arrays. However, because of the
form the wrench w has taken, the inner product of these two arrays would be
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meaningless, for it would involve the sum of two scalar quantities with different
units; moreover, none of the two quantities has an immediate physical meaning,.
In fact, the first scalar would have units of force by frequency (angular velocity
by force), while the second would have units of moment of moment multiplied
by frequency (velocity by moment), thereby leading to a physically meaningless
result. This inconsistency can be resolved if we redefine the wrench not simply
as the product of a screw by an amplitude, but as a linear transformation of
that screw involving the 6 x 6 array I" defined as

T = [(1) (1)] (3.112)

where O and 1 denote, respectively, the 3 x 3 zero and identity matrices. Now we
define the wrench as a linear transformation of the screw s defined in eq.(3.71).
This transformation is obtained upon multiplying s by the product AT, the
amplitude A having units of force, i.e.,

w=Als = [p X (A'i)h:‘p(Ae)]

The foregoing wrench is given in axis coordinates, while the twist was given in
ray coordinates.

Now, the first three components of the foregoing array can be readily iden-
tified as the moment of a force of magnitude A acting along a line of action
given by the Pliicker array of eq.(3.110), with respect to a point P, to which a
moment parallel to that line and of magnitude pA is added. Moreover, the last
three components of that array pertain apparently to a force of magnitude A4
and parallel to the same line. We denote here the above-mentioned moment by
n and the force by f, i.e.,

f=Ade, n=pxf+pf
The wrench w is then defined as

n

w = [f] (3.113)

which can thus be interpreted as a representation of a system of forces and
moments acting on a rigid body, with the force acting at point P of the body B
defined above and a moment n. Under these circumstances, we say that w acts
at point P of B.

With the foregoing definitions it is now apparent that the wrench has been
defined so that the inner product t7w will produce the power II developed by
w acting at P when B moves with a twist t defined at the same point, i.e.,

I=tTw (3.114)

When a wrench w that acts on a rigid body moving with the twist t develops
zero power onto the body, we say that the wrench and the twist are reciprocal
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to each other. By the same token, the screws associated with that wrench-twist
pair are said to be reciprocal. More specifically, let the wrench and the twist be
given in terms of their respective screws, s,, and sy, as

w=WTs,, t=Ts;, (3.115)

where W and T are the amplitudes of the wrench and the twist, respectively,
while T is as defined in eq.(3.112). Thus, the two screws s,, and s; are reciprocal
if

(T'sy) sy =sTTTs, = 0 (3.116)

and by virtue of the symmetry of T, the foregoing relation can be further ex-
pressed as

siTs; =0 or s sy, =0 (3.117)

The product sZT's; or its equivalent s} I's,, is termed the reciprocal product of
the two screws s; and s,,.

Now, if A and P are arbitrary points of a rigid body, we define the wrench
at these points as

n n
w4 = [ fA], wp = [ fP] (3.118)
Therefore, eq.(3.106) leads to
wp =Vwy (3.119a)

where

o 1 (3.119b)

V= [1 A - P]
with A and P already defined in eq.(3.83b) as the cross-product matrices of
vectors a and p, respectively. Thus, wp is a linear transformation of w4. By
analogy with the twist-transfer formulas of eqs.(3.83a & b), egs.(3.119a & b)
are termed here the wrench-transfer formulas.

Multiplying the transpose of eq.(3.83a) by eq.(3.119a) yields

tEwp =t UTVw, (3.120)
where
1 -A+P][1 A-P
UTv = [0 1 ] [0 1 } = lgxe (3.121)

with 16x¢ denoting the 6 x 6 identity matrix. Thus, tiwp = t{w 4, as expected,
since the wrench develops the same amount of power, regardless of where the
force is assumed to be applied. Also note that an interesting relation between
U and V follows from eq.(3.121), namely,

vi=u"T (3.122)



118 3. Fundamentals of Rigid-Body Mechanics

3.8 Dynamics of Rigid Bodies

The equations governing the motion of rigid bodies are recalled in this section
and cast into a form suitable to multibody dynamics. To this end, a few defi-
nitions are introduced. If a rigid body has a mass density p, which need not be
constant, then its mass m is defined as

m:/de (3.123)
B

where B denotes the region of the 3-dimensional space occupied by the body.
Now, if p denotes the position vector of an arbitrary point of the body, from a
previously defined origin O, the mass first moment of the body with respect to
0, qo, is defined as

qo = / ppdB (3.124)
B

Furthermore, the mass second moment of the body with respect to O is defined
as

Io= /B o(lIpl21 - pp™ )dB (3.125)

which is apparently a symmetric matrix. This matrix is also called the moment-
of-inertia matrix, or inertia tensor, of the body under study with respect to O.
One can readily prove a classical result:

Theorem 3.8.1 The moment of inertia of a rigid body with respect to a point
O 1is positive definite.

Proof : We can prove the positive-definiteness of the mass moment of inertia
based on physical arguments. Indeed, the kinetic energy of the rigid body,
denoted by T, is defined as

1 ,.
T= / Sollplds
B

where p is the velocity of any point P of the body. For the purposes of this
discussion, it will be assumed that point O, about which the second moment
is defined, is a point of the body that is instantaneously at rest. Thus, if this
point is defined as the origin of the Euclidean space, the velocity of any point
of the body, moving with an angular velocity w, is given by

P=wXxp

which can be rewritten as
p=—-Pw

with P defined as the cross-product matrix of p. Hence,

B = (Pw)"Pw = w"PTPw = —w P%w
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Moreover, by virtue of eq.(2.39), the foregoing expression is readily reducible to
1BlI> = w”(IlplI*1 — pp")w (3.126)

Therefore, the kinetic energy reduces to
1
7= 5 [ " (IpIPL - pp* a3 (3.27)

and since the angular velocity is constant throughout the body, it can be taken
out of the integral sign, i.e.,

7=yt [ [ pllplP1 - poTyas] (3.128)

The term inside the brackets of the above equation is readily identified as I,
and hence, the kinetic energy can be written as

T= inIow (3.129)
Now, since the kinetic energy is a positive-definite quantity, the quadratic
form of eq.(3.129) is consequently positive-definite as well, thereby proving the
positive-definiteness of the second moment.
The mass center of a rigid body, measured from O, is defined as a point
C, not necessarily within the body-——think of a homogeneous torus—of position
vector ¢ given by

C

Il

qo0
- (3.130)

Naturally, the mass moment of inertia of the body with respect to its centroid
is defined as

ICE/p[Her]—rrT]dB (3.131)
B

where r is defined, in turn, as
r=p-c (3.132)

Obviously, the mass moment of inertia of a rigid body about its mass center,
also termed its centroidal mass moment of inertia, is positive-definite as well.
In fact, the mass—or the volume, for that matter—moment of inertia of a
rigid body with respect to any point is positive-definite. As a consequence, its
three eigenvalues are positive and are referred to as the principal moments of
tnertia of the body. The eigenvectors of the inertia matrix are furthermore
mutually orthogonal and define the principal azes of inertia of the body. These
axes are parallel to the eigenvectors of that matrix and pass through the point
about which the moment of inertia is taken. Note, however, that the principal
moments and the principal axes of inertia of a rigid body depend on the point
with respect to which the moment of inertia is defined. Moreover, let I and
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Ic be defined as in eqs.(3.125) and (3.131), with r defined as in eq.(3.132). Tt
is possible to show that

Io = Ic + m(||¢|*1 — ccT) (3.133a)

or, equivalently,
Io = I + mCCT (3.133b)

with C = CPM(c). Furthermore, the smallest principal moment of inertia of
a rigid body attains its minimum value at the mass center of the body. The
relationship appearing in eq.(3.133a) constitutes the Theorem of Parallel Azes,
a.k.a. Steiner’s Theorem.

Henceforth, we assume that c is the position vector of the mass center in
an inertial frame. Further, we recall the Newton-Euler equations governing the
motion of a rigid body, and let the body at hand be acted upon by a wrench
of force f applied at its mass center, and a moment no. The Newton equation
then takes the form

f = mé (3.134a)

whereas the Euler equation is
ng =Iow+w x Ipw (3.134b)

The momentum m and the angular momentum he of a rigid body moving with
an angular velocity w are defined below, the angular momentum being defined
with respect to the mass center. These are

m=meé, he=Iow (3.135)

Moreover, the time-derivatives of the foregoing quantities are readily computed
as

m=mé hg=Icw+wxIcw (3.136)
and hence, egs.(3.134a & b) take on the forms

f=1m, nc=he (3.137)

The set of equations (3.134a & b) are known as the Newton-Euler equations.
These can be written in a more compact form as we describe below. First, we
introduce a 6 x 6 matrix M that, following von Mises (1924), we term the inertia
dyad, namely,
_|Ie¢ O

M= [O ml] (3.138)
where O and 1 denote the 3 x 3 zero and identity matrices. A similar 6 x6 matrix
was defined by von Mises under the above name. However, von Mises’s inertia
dyad is full, while the matrix defined above is block-diagonal. Both matrices,
nevertheless, denote the same physical property of a rigid body, i.e., its mass
and moment of inertia. Now the Newton-Euler equations can be written as

Mt + WMt = w (3.139)
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in which matrix W, henceforth termed the angular-velocity dyad, by similarity
with the inertia dyad, is defined in turn as

(3.140)

K

O O

with  already defined as the angular-velocity matrix; it is, of course, the cross-
product matrix of the angular-velocity vector w. Note that the twist of a rigid
body lies in the nullspace of its angular-velocity dyad, i.e.,

Wt =0 (3.141)

Further definitions are introduced below: The momentum screw of the rigid
body about the mass center is the 6-dimensional vector p defined as

_ | Tow| _
p= [mé] = Mt (3.142)

Moreover, from egs.(3.136) and definition (3.142), the time-derivative of ¢ can
be readily derived as

i =Mt + Wy = Mt + WMt (3.143)

The kinetic energy of a rigid body undergoing a motion in which its mass
center moves with velocity ¢ and rotates with an angular velocity w is given by

1 1
T= §'ml|(':||2 + EwTIcw (3.144)
From the foregoing definitions, then, the kinetic energy can be written in com-
pact form as

T= —;—tTMt (3.145)

while the Newton-Euler equations can be written in an even more compact form
as

p=w (3.146)

which is a 6-dimensional vector equation.

Properly speaking, M, as given by eq.(3.138), should be subscripted with C,
to emphasize that the moment of inertia in the upper left block of M is taken
with respect to C. For brevity, we will dispense with this subscript whenever the
moment of inertia is centroidal. If the moment of inertia is taken with respect to
any other point O, then we will denote the inertia dyad with Mg. The reader
is asked to verify that Mo takes the form

(3.147)

MO:[ Io mC]

mCT mil
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Figure 3.9: Motion of a cube

3.9 Exercises

3.1 The cube of Fig. 3.9 is displaced from configuration AB... H into config-
uration A'B’... H'.

{(a) Determine the matrix representing the rotation Q undergone by the
cube, in X, Y, Z coordinates.

(b) Find the Pliicker coordinates of line £ of the cube undergoing dis-
placements of minimum magnitude.

(¢) Find the intersections of £ with the coordinate planes.

3.2 Two unit forces, f; and fs, are applied to the regular tetrahedron of unit-
length edges displayed in Fig. 3.10 in such a way that f; is directed from
Ps to P3, whereas f5 is directed from Py to P,. The effect of the foregoing
system of forces on the rigid tetrahedron is obtained by application of the
resultant of the two forces on a certain point P and a moment n. Find
the location of point P lying closest to P; that will make the magnitude
of n a minimum.

3.3 The moment of a line £; about a second line £, is a scalar u defined as

p=mn e
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34

Figure 3.10: A regular tetrahedron

where n, is the moment of £, about an arbitrary point P of Lo, while e, is
a unit vector parallel to line £o. Apparently, the necessary and sufficient
condition for two lines to intersect is that the moment of one about the
other vanish.

Using the above concept, show that the locus of all lines £ intersecting
three given lines { Ly }3 is a guadric, i.e., a surface defined by a func-
tion that is quadratic in the position vector p of a point of the surface:
fp) =p"™Mp+gTp+h =0, h>0. Notice that, the surface being
generated by the motion of a line constrained to touch the three given
lines, the surface is bound to be ruled. Now, there are only two ruled,
second-order surfaces (Pottmann and Wallner, 2001), the one-sheet hy-
perboloid and the hyperbolic paraboloid. Geometrically, the former is a
closed surface, the latter open. Algebraically, the former is characterized
by a matrix coefficient M with det(M) < 0, meaning that the matrix has
two positive and one negative eigenvalues. The hyperbolic paraboloid is
characterized by a singular M, i.e., det(M) = 0. Show, furthermore, that
det(M) is nonzero—showing that det(M) < 0 is far more challenging!—
and hence, the quadric is a one-sheet hyperboloid. Hint: Deriving the
given expression for f(p) should be done without resorting to components.
Showing that M is singular requires resorting to components. To this end,
choose the coordinate axes appropriately so as to avoid too cumbersome
eTpresstons.

A robotic gripper is provided with two redundant sensors that are meant
to measure a wrench acting on the gripper. The ith sensor, moreover, has
its own coordinate frame, labeled F;, for i = 1,2. Sensor ¢ reported the
1th measurement of the wrench wp, where subscript P indicates that the
force is applied at point P, as [wp]; = [nT, fT)7, for 4 = 1,2. These
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measurements are given as

[0 0
[n]i=10], [flhi=]2

5 0

[ —5/3 —-4/3
[n]o=[-10/3], ([flo=] 4/3

| 10/3 2/3

(a) Show that the measurements are compatible, based on invariance
arguments.

(b) Determine the relative orientation of the two frames, i.e., find the
rotation matrix transforming Fs-coordinates into Ji-coordinates.

A robot-calibration method has been proposed that allows us to determine
the location of a joint axis, £, via the Pliicker coordinates of the axis in a
coordinate frame fixed to the gripper. The Pliicker coordinates are given
aswy =[eT, nT]T.
(a) Show that the distance of the axis to the origin of the gripper-fixed
coordinate frame, d, can be determined as d = ||n|}.

(b) Show that the point P* on the axis, which lies closest to the above-
mentioned origin, has a position vector p* given as

p' =exn

(¢) From measurements on a robot, the Pliicker coordinates were esti-
mated, in a gripper-fixed frame G, as

[71'5](_; = [_\/_2_/21 0, \/5/2’ 0, _\/ia O]T

Find d and p* in gripper coordinates

The gripper G of a robot is approaching a workpiece B, as indicated in
Fig. 3.11, with planes I7; and Il parallel to each other and normal to
IT3. The workpiece is made out of a cube of unit length from which two
vertices have been removed, thereby producing the equilateral triangular
faces DEF and D'E'F’. Moreover, two coordinate frames, F (X, Y, Z)
and F' (X', Y’, Z'), are defined as indicated in the figure, in which Y is,
apparently, parallel to line D'C’.

It is required to grasp B with G in such a way that planes IT; and I, coin-
cide with the triangular faces, while carrying the Y’ axis to an orientation
perpendicular to the diagonal CC' of B. More concretely, in the grasping
configuration, frame F' is carried into F" (X", Y, and Z"), not shown
in the figure, in such a way that unit vectorsi”, j”, k", parallel to X", V",
Z", respectively, are oriented so that i" has all three of its F-components
positive, while j has its Z-component positive.
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(a) Compute the angle of rotation of the motion undergone by G from
a pose in which ' and F have identical orientations, termed the
reference pose, and find the unit vector parallel to the axis of rotation,
in frame F.

Figure 3.11: A workpiece B to be grasped by a gripper G

(b) The position vector of point P of G is known to be, in the reference
pose,
2
[plr=| -1
0.25
Determine the set of points of G undergoing a displacement of min-
imum magnitude, under the condition that P, in the displaced con-
figuration of G, coincides with C".

3.7 In calibrating a robot, the Pliicker coordinates of one of its axes are to be
determined in a given coordinate frame. To this end, the moment of this
axis is measured with respect to two points, A and B, of position vectors
[a] =[1,0,0]7 and [b] = [0, 1, 1], respectively. The said moments,
n4 and np, respectively, are measured as

0 0
[na]= (2], [ng]=|1
0 1

with all entries given in meters.

(a) Determine the unit vector e defining the direction of the axis under
discussion.

(b) Find the coordinates of the point P* of the axis that lies closest to
the origin
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(¢) Find the Pliicker coordinates of the axis about the origin, i.e., the
Pliicker coordinates of the axis in which the moment is defined with
respect to the origin.

Prove that for any 3-dimensional vectors w and p,

w x (wx (W x (@xp)) ) = (~DF(w|**1 — jw|** DwwT)p
2k E;tors

W x (W x - (W x (W xp))--) = (1) (wlP*w) x p

~

2k+1 factors

A “small” rotation is defined as that about an arbitrary axis parallel to the
unit vector e, through a “small” angle ¢, so that ¢ << 1. Prove that the
angular-velocity vector, in the special case of “small” rotations, turns out
to be a time-derivative. What is the vector whose time-derivative yields
the angular-velocity vector?

Derive an expression for the angular velocity w in terms of Euler angles,
which were introduced in Exercise 2.18. More specifically, if we store the
Euler angles in array n = [6, ¢, ¥]7, then, find the matrix W such that

w=Wnq

Notice that, given 7 and w, an expression for 77 can be obtained upon
inverting W. However, W is not always invertible. Find under which
conditions W becomes singular. Notice: The use of computer algebra is
strongly recormmended to solve this exercise.

A rectangular prism with regular hexagonal bases whose sides are 25 mm
long and whose height is 150 mm is to undergo a pick-and-place operation—
See Chapter 6 to understand what this means—that requires knowledge
of its centroid location and its moment-of-inertia matrix. Find the cen-
troidal principal axes and moments of inertia under the assumption that
the prism is made from a homogeneous material.

The prism of Exercise 3.11 now undergoes a machining process cutting it
into two parts, which are separated by a plane that contains one of the
edges of the base and makes an angle of 45° with the axis of the prism.
Find the centroidal principal axes and moments of inertia of each of the
two parts.

In Exercise 2.22 assume that a mass m is located at every point P;
of position vector p;. Give a mechanical interpretation of the matrix
m[tr(PPT)1 — PP7], with P defined in that exercise.
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3.14

3.15

3.16

3.17

3.18

3.19

The centroidal inertia matrix of a rigid body is measured by two observers,
who report the two results below:

100 (6 2 2
[Ta={0 2 0, [Ms=5|2 5 0
00 3 2 0 7

Show that the two measurements are acceptable. Hint: Use invariance
arguments.

State the conditions under which a point and the mass center of a rigid
body share the same principal axes of inertia. In other words, let Ip and
I¢ be the moment-of-inertia matrices of a rigid body about a point P and
its mass center, C, respectively. State the conditions under which the two
matrices have common eigenvectors. Moreover, under these conditions,
what are the relationships between the two sets of principal moments of
inertia?

Show that the smallest principal moment of inertia of a rigid body attains
its minimum value at the mass center.

Show that the time-rate of change of the inertia dyad M of a rigid body
is given by )
M=WM-MW

Then, recall the momentum screw g defined as
n=Mt

where t is the twist of the body, defined at its mass center. Now, with
the above expression for M, restate the result displayed in eq.(3.143), i.e.,
show that

[t = Mt + WMt

A wrench w = [nT f7]7 with f acting at point P of the gripper of
Fig. 2.10, is measured by a siz-azis force sensor, to which a frame Fg is
attached, as indicated in that figure. If points P and S lie a distance of

100 mm apart, find the wrench in F5, when the readouts of the sensor are

1 0
[n]g=|0| Nm, [fls=]|1| N
1 0

Derive eq.(3.147). Moreover, paraphrasing Steiner’s Theorem, eq.(3.133b),
notice that Mo can be expressed as
mCT O

Mo = Mg + P, P:[ 0 mC]
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The above expression can be termed the 6 x 6 form of Steiner’s Theorem
or, equivalently, of the Parallel-Axis Theorem. Now, in trying to mimic
Steiner’s Theorem, one would like to express P in the same form as the
second term of eq.(3.133b), as the product mRR7, with R defined as a
suitable 6 x 6 matrix. Can this matrix be found? If yes, give an expression
for R, if not, explain why.



Chapter 4

Geometry of Decoupled
Serial Robots

4.1 Introduction

This chapter is devoted to the displacement analysis of robotic manipulators of
the serial type, which we call the geometry of serial robots. The study is limited
to decoupled robots, to be defined below, the inverse displacement analysis of
general six-axis robots being the subject of Chapter 9. These robots serving
mainly to perform manipulation tasks, they are also referred to as manipulators.

We begin by defining a serial, n-axis manipulator. In connection with this
manipulator, additionally, we will (¢) introduce the Denavit-Hartenberg notation
for the definition of link frames that uniquely determine the architecture and the
configuration, or posture, of the manipulator at hand; (it) define the Cartesian
and joint coordinates of this manipulator; and (i%i) relate these two sets of
variables by means of its geometric model. Moreover, with regard to six-axis
manipulators, we will define decoupled manipulators and provide a procedure
for the solution of their inverse displacement model.

4.2 The Denavit-Hartenberg Notation

One of the first tasks of a robotics engineer is the geometric modeling of a robotic
manipulator. This task consists in devising a model that can be unambiguously
(7) described to a control unit through a database and (i%) interpreted by other
robotics engineers. The purpose of this task is to give manipulating instructions
to a robot, regardless of the dynamics of the manipulated load and the robot
itself. The simplest way of geometrically modeling a robotic manipulator is by
means of the concept of kinematic chain. A kinematic chain is a set of rigid
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Figure 4.1: The two basic lower kinematic pairs: the revolute and the prismatic
joints

bodies, also called links, coupled by kinematic pairs, also termed joints. A
kinematic pair is, then, the coupling of two rigid bodies so as to constrain their
relative motion. We distinguish two basic types of kinematic pairs, namely,
higher and lower kinematic pairs. A higher kinematic pair arises between rigid
bodies when contact takes place along a line or at a point. This type of coupling
occurs in cam-and-follower mechanisms, gear trains, and roller bearings, for
example. A lower kinematic pair occurs when contact takes place along a surface
common to the two bodies. Six different types of lower kinematic pairs can be
distinguished (Hartenberg and Denavit, 1964; Angeles, 1982), but all these can
be produced from two basic types, namely, the rotating pair, denoted by R
and also called revolute, and the sliding pair, represented by P and also called
prismatic.

The common surface along which contact takes place in a revolute pair is
a circular cylinder, a typical example of this pair being the coupling through
journal bearings. Thus, two rigid bodies coupled by a revolute can rotate relative
to each other about the axis of the common cylinder, which is thus referred to as
the azis of the revolute, but are prevented from undergoing relative translations
as well as rotations about axes other than the cylinder axis. On the other hand,
the common surface of contact between two rigid bodies coupled by a prismatic
pair is a prism of arbitrary cross section, and hence, the two bodies coupled
in this way are prevented from undergoing any relative rotation and can move
only in a pure-translation motion along a direction parallel to the axis of the
prism. As an example of this kinematic pair, one can cite the dovetail coupling.
Note that whereas the revolute axis is a totally defined line in three-dimensional
space, the prismatic pair has no axis; this pair has only a direction. That is, the
prismatic pair does not, have a particular location in space. Nevertheless, and for
the sake of conciseness, we will refer to joint axis generically, when speaking of
either revolute or prismatic joints. Bodies coupled by a revolute and a prismatic
pair are shown in Fig. 4.1.
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Serial manipulators will be considered in this chapter, their associated kine-
matic chains thus being of the simple type, i.e., each and every link is coupled
to at most two other links. A simple kinematic chain can be either closed or
open. Tt is closed if each and every link is coupled to two other links, the chain
then being called a linkage; it is open if it contains exactly two links, the end
ones, that are coupled to only one other link. Thus, simple kinematic chains
studied in this chapter are open, and in the particular robotics terminology,
their first link is called the manipulator base, whereas their last link is termed
the end-effector (EE).

Thus, the kinematic chains associated with manipulators of the serial type
are composed of binary links, the intermediate ones, and exactly two simple
links, those at the ends. Hence, except for the end links, all links carry two
kinematic pairs, and as a consequence, two pair axes—but remember that a
prismatic pair has a direction but no axis. In order to uniquely describe the
architecture of a kinematic chain, i.e., the relative location and orientation
of its neighboring pair axes, the Denavit-Hartenberg notation (Denavit and
Hartenberg, 1955) is introduced. To this end, links are numbered 0, 1, ..., n,
the sth pair being defined as that coupling the (i — 1)st link with the ¢th link.
Hence, the manipulator is assumed to be composed of n + 1 links and n pairs;
each of the latter can be either R or P, where link 0 is the fixed base, while link
n is the end-effector. Next, a coordinate frame F; is defined with origin O; and
axes X;, Y;, Z;. This frame is attached to the (i — 1)st link—not to the ith
link!-—for ¢ = 1, ..., n + 1. This is the classical Denavit-Hartenberg notation.
Khalil and Kleinfinger (Khalil and Dombre, 2002) modified this notation to
make it “less ambiguous.” In the balance of the book we follow the classical
notation. For the first n frames, this is done following the rules given below:

1. Z; is the axis of the ith pair. Notice that there are two possibilities of
defining the positive direction of this axis, since each pair axis is only a
line, not a directed segment. Moreover, the Z; axis of a prismatic pair can
be located arbitrarily, since only its direction is defined.

2. X; is defined as the common perpendicular to Z;_; and Z;, directed from
the former to the latter, as shown in Fig. 4.2(a). Notice that if these
two axes intersect, the positive direction of X; is undefined and hence,
can be freely assigned. Henceforth, we will follow the right-hand rule in
this case. This means that if unit vectors i;, k;_y, and k; are attached to
axes X;, Z;_1, and Z;, respectively, as indicated in Fig. 4.2(b), then i; is
defined as k;_1 x k;. Moreover, if Z; 1 and Z; are parallel, the location
of X; is undefined. In order to define it uniquely, we will specify X; as
passing through the origin of the (i — 1)st frame, as shown in Fig. 4.2(c).

3. The distance between Z; and Z; 1 is defined as a;, which is thus nonneg-
ative.

4. The Z;-coordinate of the intersection O} of Z; with X;;; is denoted by b;.
Since this quantity is a coordinate, it can be either positive or negative.
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Figure 4.2: Definition of X; when Z;_; and Z;: (a) are skew; (b) intersect; and
(c) are parallel

Its absolute value is the distance between X; and X;i;, also called the
offset between successive common perpendiculars to the corresponding
joint axes.

5. The angle between Z; and Z;, is defined as «; and is measured about the
positive direction of X; ;. This item is known as the twist angle between
successive pair axes.

6. The angle between X; and X;;1 is defined as 6; and is measured about
the positive direction of Z;.

The (n + 1)st coordinate frame is attached to the far end of the nth link.
Since the manipulator has no (n + 1)st link, the foregoing rules do not apply to
the definition of this frame. The analyst, thus, has the freedom to define this
frame as it best suits the task at hand. Notice that n + 1 frames, Fy, Fo, ...,
Fn+1, have been defined, whereas links are numbered from 0 to n. In summary,
a n-axis manipulator is composed of n + 1 links and n + 1 coordinate frames.
These rules are illustrated with an example below.

Consider the architecture depicted in Fig. 4.3, usually referred to as a Puma
robot, which shows seven links, numbered from 0 to 6, and seven coordinate
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frames, numbered from 1 to 7. Note that the last frame is arbitrarily defined,
but its origin is placed at a specific point of the EE, namely, at the operation
point P, which is used to define the task at hand. Furthermore, three axes
intersect at a point C, and hence, all points of the last three links move on
concentric spheres with respect to Fy, for which reason the subchain comprising
these three links is known as a spherical wrist, point C being its center. By the
same token, the subchain composed of the first four links is called the arm.
Thus, the wrist is decoupled from the arm, and is used for orientation purposes,
the arm being used for the positioning of point C. The arm is sometimes called
the regional structure and the wrist the local structure, the overall manipulator
thus being of the decoupled type.

Figure 4.3: Coordinate frames of a Puma robot

In the foregoing discussion, if the ith pair is R, then all quantities involved in
those definitions are constant, except for 8;, which is variable and is thus termed
the joint variable of the ith pair. The other quantities, i.e., a;, b;, and ¢4, are the
joint parameters of the same pair. If, alternatively, the ith pair is P, then b; is
variable, and the other quantities are constant. In this case, the joint variable is
b;, and the joint parameters are a;, a;, and ;. Notice that associated with each
joint there are exactly one joint variable and three constant parameters. Hence,
a n-axis manipulator has n joint variables—which are henceforth grouped in the
n-dimensional vector 8, regardless of whether the joint variables are angular or
translational—and 3n constant parameters. The latter define the architecture
of the manipulator, while the former determine its configuration, or posture.

Whereas the manipulator architecture is fully defined by its 3n Denavit-
Hartenberg (DH) parameters, its posture is fully defined by its n joint variables,
also called its joint coordinates, once the DH parameters are known. The relative
pose—position and orientation-—between links is fully specified, then, from the
background of Chapter 2, by (¢) the rotation matrix taking the X;, Y;, Z; axes
into a configuration in which they are parallel pairwise to the X; 11, Yit1, Zit1
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Yigs

)

Figure 4.4: Relative orientation of the ith and (i + 1)st coordinate frames

axes, and (¢¢) the position vector of the origin of the latter in the former. The
representations of the foregoing items in coordinate frame F; will be discussed
presently. First, we obtain the matrix representation of the rotation Q; carrying
F; into an orientation coincident with that of F; 1, assuming, without loss of
generality because we are interested only in changes of orientation, that the
two origins are coincident, as depicted in Fig. 4.4. This matrix is most easily
derived if the rotation of interest is decomposed into two successive rotations,
as indicated in Fig. 4.5. In that figure, X}, ¥/, Z! is an intermediate coordinate
frame F., obtained by rotating F; about the Z; axis through an angle 8;. Then,
the intermediate frame is rotated about X; through an angle «;, which takes
it into a configuration coincident with F;;,. Let the foregoing rotations be
denoted by [C;]; and [A;]s, respectively, which are readily derived for they
are in the canonical forms (2.55¢) and (2.55a), respectively.
Moreover, let
Ai = cosSay, i = sinoy (4.1a)

One thus has, using subscripted brackets as introduced in Section 2.2,

cos®; —sinf; 0 1 0 0
[ Ci ]1' = | sin 01 COos 01' 0 3 [ Ai ]'i’ =10 Ai — 4 (41b)
0 0 1 0 p N

and hence, the matrix sought is computed simply as
[Q:]i =[C:i]i[Ails (4.1c)
Henceforth, we will use the abbreviations introduced below:

Qi=[Q:iiy Ci=[Cili, Ai=[Ails (4.1d)
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Figure 4.5: (a) Rotation about axis Z; through an angle 8;; and (b) relative
orientation of the ¢'th and the (i + 1)st coordinate frames

thereby doing away with brackets, when these are self-understood. Thus,

cos®; —A;sind;  p;sinb;
Q,’ = [ Qi ]i = | sin 91' /\i COS 01- — M3 COS 01' (4.16)
0 i Ai

One more factoring of matrix Q;, which will be used in Chapter 9, is given

below:
Qi = Z:X; (4.2a)

with X; and Z; defined as two pure reflections, the former about the Y; Z; plane,
the latter about the X;Y; plane, namely,

1 0 0 cosf; sin8; O
XZ' =10 “‘)\z’ il Zi = | sin 0,’ - CO8 01' 0 (42b)
0 2% )\i 0 0 1

Note that both X; and Z; are symmetric and self-inverse—see Section 2.2.
In order to derive an expression for the position vector a; connecting the origin
O; of F; with that of F;;1, Osy1, reference is made to Fig. 4.6, showing the
relative positions of the different origins and axes involved. From this figure,

apparently,
a; = mi+1 = mil + Oz‘l 61‘4_1 (43&)

where obviously,

0 a;
[a'_éi']i= 01, [Oi’6i+1]i+1= 0

b; 0
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Now, in order to compute the sum appearing in eq.(4.3a), the two foregoing
vectors should be expressed in the same coordinate frame, namely, F;. Thus,

a; cosf;
[Oi’6i+l i =[Qu)s [Oi’6i+1 Jit1 = | a;siné;
0
and hence,
a;cosf;
[a,' ]i =1 a; sin 61 (4312))
b;
For brevity, we introduce one more definition:
a; = [ai]i (4.3C)

Similar to the foregoing factoring of Q;, vector a; admits the factoring

a; = Q;b; (4.3d)
where b; is given by
a;
bi = bz’,u/'i (436)
biA;

with the definitions introduced in eq.(4.1a). Hence, vector b; is constant for
revolute pairs. From the geometry of Fig. 4.6, it should be apparent that b; is
nothing but a; in Fi4,, i.e.,

b; ={a;];+1 .

Matrices Q; can also be regarded as coordinate transformations. Indeed, let
i;, ji, and k; be the unit vectors parallel to the X;, Y;, and Z; axes, respectively,
directed in the positive direction of these axes. From Fig. 4.6, it is apparent
that

cos &; 4 8in 6;
[ii41]i = | sind; |, [kip1]i = [ —pscos;
0 Ai
whence
_)\i sin 01'
lJit1)i = [kig1 Xdig1]i = | Aicos®;
Hi

Therefore, the components of i;11, Ji+1, and k41 in F; are nothing but the
first, second, and third columns of Q;. In general, then, any vector v in F;1 is
transformed into F; in the form

[v]i=[Qili[v]in
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Figure 4.6: Layout of three successive coordinate frames

which is a similarity transformation, as defined in eq.(2.119). Likewise, any
matrix M in F;4; is transformed into JF; by the corresponding similarity trans-
formation, as given by eq.(2.130):

[M]; = [Qi]i[M]i1[QF I:
The inverse relations follow immediately in the form
[VIa = [QF Lilv], [Mlipr = [Qf LIML[Q:ls

or, upon recalling the first of definitions (4.1d),

[v]i = Qiv]it1, [M)i= QM1 Qf (4.4a)
[VIir = Q] [v];, [Mli1 = QI [M]:Q; (4.4b)
Moreover, if we have a chain of i frames, F1, Fa, ..., F;, then the inward

coordinate transformation from F; to F; is given by

[v]i=QiQa--- Qia[v]i (4.5a)
M) =QQa - Qi1 [Mi(Q1Q2 - Qi—1)T (4.5b)

Likewise, the outward coordinate transformation takes the form

[v])i=(QiQz- - Qi-1)T[v]h (4.6a)
[M]i = (Q1Q2- - Qi—1) " [M]1QiQ2-- - Qis (4.6b)
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4.3 The Geometric Model of Six-Revolute Ma-

nipulators

The kinematics of serial manipulators begins with the study of the geometric
relations between joint variables and Cartesian variables. The former were
defined in Section 4.2 as those determining the posture of a given manipulator,
with one such variable per joint; a six-axis manipulator, like the one displayed
in Fig. 4.7, thus has six joint variables, 8y, 85, ..., 8. The Cartesian variables
of a manipulator, in turn, are those variables defining the pose of the EE; since
six independent variables are needed to define the pose of a rigid body, the
manipulator of Fig. 4.7 thus involves six Cartesian variables.

The study outlined above pertains to the geometry of the manipulator, for it
involves one single pose of the EE. Besides geometry, the kinematics of manip-
ulators comprises the study of the relations between the time-rates of change of
the joint variables, referred to as the joint rates, and the twist of the EE. Addi-
tionally, the relations between the second time-derivatives of the joint variables,
referred to as the joint accelerations, with the time-rate of change of the twist
of the EE also pertain to robot kinematics.

In the balance of this chapter we study the geometry of manipulators, the
relations between joint rates, joint accelerations and their Cartesian counter-
parts, twist and twist-rate, being the subject of Chapter 5. In this regard, we
distinguish two problems, commonly referred to as the direct and the inverse
displacement problems, or DDP and correspondingly, IDP, for brevity. In the
DDP, the six joint variables of a given six-axis manipulator are assumed to be
known, the problem consisting in finding the pose of the EE. In the IDP, on the
contrary, the pose of the EE is given, while the six joint variables that produce
this pose are to be found.

The DDP reduces to matrix and matrix-times-vector multiplications; as we
shall show presently, the DDP poses no major problem. The IDP, however, is
more challenging, for it involves intensive variable-elimination and nonlinear-
equation solving. Indeed, in the most general case, the IDP amounts to elimi-
nating five out of the six unknowns, with the aim of reducing the problem to a
single monovariate polynomial of 16th degree or lower. While finding the roots
of a polynomial of this degree is no longer an insurmountable task, reducing the
underlying system of nonlinear equations to a monovariate polynomial requires
intensive computer-algebra work that must be very carefully planned to avoid
the introduction of spurious roots and, with this, an increase in the degree of
that polynomial. For this reason, we limit this chapter to the study of the ge-
ometric IDP of decoupled six-axis manipulators. The IDP of the most general
six-revolute serial manipulator is studied in Chapter 9.

In studying the DDP of six-axis manipulators, we need not limit ourselves
to a particular architecture. We thus study here the DDP of manipulators such
as the one sketched in Fig. 4.7. This manipulator consists of seven rigid bodies,
or links, coupled by six revolute joints. Correspondingly, we have seven frames,
Fi, Fa, ..., Fr, the ith frame fixed to the (i — 1)st link, F; being termed the
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Figure 4.7: Serial six-axis manipulator

base frame, because it is fixed to the base of the manipulator. Manipulators
with joints of the prismatic type are simpler to study and can be treated using
correspondingly simpler procedures.

A line £; is associated with the axis of the ith revolute joint, and a positive
direction along this line is defined arbitrarily through a unit vector e;. For a
prismatic pair, a line £; can be also defined, as a line having the direction of
the pair but whose location is undefined; the analyst, then, has the freedom
to locate this axis conveniently. Thus, a rotation of the ith link with respect
to the (¢ — 1)st link or correspondingly, of F;;1 with respect to F;, is totally
defined by the geometry of the ith link, i.e., by the DH parameters a;, b;, and o,
plus e; and its associated joint variable 8;. Then, the DH parameters and the
joint variables define uniquely the posture of the manipulator. In particular, the
relative position and orientation of F;; with respect to F; is given by matrix Q;
and vector a;, respectively, which were defined in Section 4.2 and are displayed
below for quick reference:

cosf; —MA;sinf;  p;siné; a; cos b;
Q; = | sinf; A;cos®; —picosb;|, a;=|a;sing; 4.7
0 Hi Ai b;

Thus, Q; and a; denote, respectively, the matrix rotating F; into an orien-
tation coincident with that of F;,, and the vector joining the origin of F; with
that of F;,,, directed from the former to the latter. Moreover, Q; and a;, as
given in eq.(4.7), are represented in F; coordinates. The equations leading to
the geometric model under study are known as the displacement equations. It
is noteworthy that the problem under study is equivalent to the input-output
analysis problem of a seven-revolute linkage with one degree of freedom and one
single kinematic loop (Duffy, 1980). Because of this equivalence with a closed
kinematic chain, sometimes the displacement equations are also termed closure
equations. These equations relate the orientation of the EE, as produced by
the joint coordinates, with the prescribed orientation Q and the position vector
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p of the operation point P of the EE. That is, the orientation Q of the EE is
obtained as a result of the six individual rotations { Q; }$ about each revolute
axis through an angle 8;, in a sequential order, from 1 to 6. If, for example, the
foregoing relations are expressed in Fi, then

[Q6]1[Qs)1[Q4]1[ Q31 [Q211[ Q11 = [QLx (4.8a)
[a1]i +[a2]i +[as)i + [aa)s +[as]1 + [as )1 = [P (4.8b)

Notice that the above equations require that all vectors and matrices involved
be expressed in the same coordinate frame. However, we derived in Section 4.2
general expressions for Q; and a; in F;, eqs.(4.1e) and (4.3b), respectively. It is
hence convenient to represent the foregoing relations in each individual frame,
which can be readily done by means of similarity transformations. Indeed, if we
apply the transformations (4.5a & b) to each of [a;]; and [Q;];, respectively,
we obtain a; or, correspondingly, Q; in F;. Therefore, eq.(4.8a) becomes

[Q1]1[Q2]2[Q3]3[Q414[Qs515[ Qs le = [ Q)1

Now for compactness, let us represent [Q]; simply by Q and let us recall the
abbreviated notation introduced in eq.(4.1d), where [ Q; }; is denoted simply by
Q;, thereby obtaining

Q1Q2Q3Q4Q:5Q6 = Q (4.9a)
Likewise, eq.(4.8b) becomes

a; + Qi (a2 + Qaz + Q2Qzas + Q2Q3Quas + Q2Q3Q4Qsa5) =p  (4.9b)

in which both sides are given in base-frame coordinates. Equations
(4.9a & b) above can be cast in a more compact form if homogeneous transforma-
tions, as defined in Section 2.5, are now introduced. Thus, if we let T; = {'T; };
be the 4 x 4 matrix transforming JF;1-coordinates into F;-coordinates, the fore-
going equations can be written in 4 X 4 matrix form, namely,

T TyT3TyTsTg =T (4.10)

with T denoting the transformation of coordinates from the end-effector frame
to the base frame. Thus, T contains the pose of the end-effector.

In order to ease the discussion ahead, we introduce now a few definitions. A
scalar, vector, or matrix expression is said to be multilinear in a set of vectors
{ v}V if each of those vectors appears only linearly in the same expression. This
does not prevent products of components of those vectors from occurring, as long
as each product contains only one component, of the same vector. Alternatively,
we can say that the expression of interest is multilinear in the aforementioned
set of vectors if and only if the partial derivative of that expression with respect
to vector v; is independent of v;, for i = 1,..., N. For example, every matrix
Q; and every vector a;, defined in egs.(4.1e) and (4.3b), respectively, is linear
in vector x;, where x; is defined as

x; = [COSG"], (4.11)

sin 01
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Moreover, the product Q; Q2:Q3Q4Q5Qs appearing in eq.(4.9a) is hezalinear, or
simply, multilinear, in vectors { x; }$. Likewise, the sum appearing in eq.(4.9b)
is multilinear in the same set of vectors. By the same token, a scalar, vector, or
matrix expression is said to be multiquadraetic in the same set of vectors if those
vectors appear at most quadratically in the said expression. That is, the expres-
sion of interest may contain products of the components of all those vectors, as
long as those products contain, in turn, a maximum of two components of the
same vector, including the same component squared. Qualifiers like multicubic,
multiquartic, etc., bear similar meanings.
Further, we partition matrix Q; rowwise and columnwise, namely,

QiE ng: E[pi q; uz-] (412)

It is noteworthy that the third row o of Q; is independent of 6;, a fact that
will be found useful in the forthcoming derivations. Furthermore, note that
according to the DH notation, the unit vector e; in the direction of the ith joint
axis in Fig. 4.7 has F;-components given by

[e;i= 0] =e (4.13)
1

Henceforth, e is used to represent a 3-dimensional array with its last component
equal to unity, its other components vanishing. Thus, we have

Q;o; = Q;frui —e (4.14a)

or
u;=Qie, 0;,=Qfe (4.14b)

That is, if we regard e in the first of the foregoing relations as [e;41 ]i+1, and
as [e;]; in the second relation, then, from the coordinate transformations of
egs.(4.4a & b),

u; =[e;1);, and o;=[e;]i (4.15)

4.4 The Inverse Displacement Analysis of De-
coupled Manipulators

Industrial manipulators are frequently supplied with a special architecture that
allows a decoupling of the positioning problem from the orientation problem. In
fact, a determinant design criterion in this regard has been that the manipulator
lend itself to a closed-form inverse displacement solution. Although the class
of manipulators with this feature is quite broad, we will focus on a special
kind, the most frequently encountered in commercial manipulators, that we have
termed decoupled. Decoupled manipulators were defined in Section 4.2 as those



142 4. Geometry of Decoupled Serial Robots

Figure 4.8: A general 6R manipulator with decoupled architecture

whose last three joints have intersecting axes. These joints, then, constitute
the wrist of the manipulator, which is said to be spherical, because when the
point of intersection of the three wrist axes, C, is kept fixed, all the points of
the wrist move on spheres centered at C. In terms of the DH parameters of
the manipulator, in a decoupled manipulator a4y = a5 = bs = 0, and thus, the
origins of frames 5 and 6 are coincident. All other DH parameters can assume
arbitrary values. A general decoupled manipulator is shown in Fig. 4.8, where
the wrist is represented as a concatenation of three revolutes with intersecting
axes.

In the two subsections below, a procedure is derived for determining all
the inverse displacement solutions of decoupled manipulators. In view of the
decoupled architecture of these manipulators, we conduct their displacement
analysis by decoupling the positioning problem from the orientation problem.

4.4.1 The Positioning Problem

We solve first the positioning problem. Let C' denote the intersection of axes
4, 5, and 6, i.e., the center of the spherical wrist, and let ¢ denote the position
vector of this point. Apparently, the position of C is independent of joint angles
84, 05, and 5; hence, only the first three joints are to be considered for this
analysis. The arm structure depicted in Fig. 4.9 will then be analyzed. From
that figure,

a; + Qiaz + Q1Qq2a3 + Q1 Q2Qza4 = ¢ (4.16)

where the two sides are expressed in Fj-coordinates. This equation can be
readily rewritten in the form

as + Qra; + Q2Qzas = Q7 (c — a;)
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or if we recall eq.(4.3d),
Q2(b2 + Qsb; + Q3Qubs) = Qfc — by
However, since we are dealing with a decoupled manipulator, we have

0
ay=Qibs= | 0| =bse
b4

which has been rewritten as the product of constant by times the unit vector e
defined in eq.(4.13).
Thus, the product Q3Q4by reduces to

Q3Qqby = b4Qze = byu3
with u; defined in eq.(4.14b). Hence, eq.(4.16) leads to
Q2 (b + Qzbs + byuz) = QT c — by (4.17)

Further, an expression for ¢ can be derived in terms of p, the position vector of
the operation point of the EE, and Q, namely,

c=p - Q:Q:Q:Qsa5 — Q:1Q2Q:3Q4Qs2¢ (4.18a)
Now, since as = by = 0, we have that a; = 0, eq.(4.18a) thus yielding
c=p-—QQfas =p— Qbg (4.18b)

Moreover, the base coordinates of P and C, and hence, the Fj-components of
their position vectors p and ¢, are defined as

x zc
[Pli=|y|, [ch=]ye
z zZC
o that eq.(4.18b) can be expanded in the form
zc T — (q1106 + qa2bejie + q13beAe)
yo | = |y — (2106 + qa2bs e + q23b6 A6) (4.18¢)
2c z — (g31a6 + @a2be 6 + ga3beAs)

where g;; is the (4, ) entry of [Q]1, and the positioning problem now becomes
one of finding the first three joint angles necessary to position point C at a
point of base coordinates z¢, y¢, and z¢. We thus have three unknowns, but
we also have three equations at our disposal, namely, the three scalar equations
of eq.(4.17), and we should be able to solve the problem at hand.

In solving the foregoing system of equations, we first note that (i) the left-
hand side of eq.(4.17) appears multiplied by Qa; and (#i) 82 does not appear
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C(xc: Yeo Zc)

Figure 4.9: Three-axis, serial, positioning manipulator

in the right-hand side. This implies that (¢) if the Euclidean norms of the two
sides of that equation are equated, the resulting equation will not contain 6s;
and (i4) the third scalar equation of the same equation is independent of 65,
by virtue of the structure of the Q; matrices displayed in eq.(4.1e). Thus, we
have two equations free of 85, which allows us to calculate the two remaining
unknowns 8; and 6.

Let the Euclidean norm of the left-hand side of eq.(4.17) be denoted by I,
that of its right-hand side by r. We then have

I = a2 + b3 + a2 + b2 + b2 + 2b] Qb3 + 2b4b uz + 2A3b3by
r? = [le|l? + |[b.||* — 2b7 QT ¢

from which it is apparent that [2 is linear in x3 and r? is linear in x;, for x;
defined in eq.(4.11). Upon equating I? with r2, then, an equation linear in x;
and x3—not bilinear in these vectors—is readily derived, namely,

Acy +Bsy +Cez+Dss+E =0 (4.19a)
whose coefficients do not contain any unknown, i.e.,

A =2ayz¢ (4.19D)
B = 2a1y¢ (4.19¢)
C = 20,20,3 —_ 2b2b4,u2,u3 (419(21)
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D= 2a3b2u2 + 2a2b4u3 (4.196)
E=a3+a} +b3+b5+b5—a?—2% —yE — (zc — b)?
+2bob3 Ag 4+ 2b2bi Ao A3 + 2b3ba A3 (419f)

Moreover, the third scalar equation of eq.(4.17) takes on the form
Fei +Gsy+Heg +1s3+J=0 (420&)

whose coeflicients, again, do not contain any unknown, as shown below:

F = yomu (4.20b)
G=—-zcm (4.20¢)
H = —bypapz (4.20d)
I=azpsy (4.20e)
J = by + bgda + badads — (20 — b1)As (4.20f)

Thus, we have derived two nonlinear equations in #; and €3 that are linear
in ¢, 1, ¢3, and s3. Each of these equations thus defines a contour in the 6;-683
plane, their intersections determining all real solutions to the problem at hand.

Note that if ¢; and s; are substituted for their equivalents in terms of
tan(6;/2), for i = 1,3, then two biquadratic polynomial equations in tan(f;/2)
and tan(f3/2) are derived. Thus, one can eliminate one of these variables from
the foregoing equations, thereby reducing the two equations to a single quartic
polynomial equation in the other variable. The quartic equation thus resulting
is called the characteristic equation of the problem at hand. Alternatively, the
two above equations, eqs.(4.19a) and (4.20a), can be solved for, say, ¢; and s;
in terms of the data and ¢3 and 33, namely,

_ —G(Ces + Ds3 + E)+ B(Heg + Isg + J)

1 A (4.21a)
o = F(Ces +D33-+-E)A—1 A(Hez + Isz + J) (4.21b)

with A, defined as
Ay = AG ~ FB = —2ay i1 (2% + y2) (4.21¢)

Note that in trajectory planning, to be studied in Chapter 6, A; can be com-
puted off-line, i.e., prior to setting the manipulator into operation, for it is a
function solely of the manipulator parameters and the Cartesian coordinates
of a point lying on the path to be tracked. Moreover, the above calculations
are possible as long as A; does not vanish. Now, A; vanishes if and only if
any of the factors ai, w, and z% + y% does. The first two conditions are
architecture-dependent, whereas the third is position-dependent. The former
occur frequently in industrial manipulators, although not both at the same
time. If both parameters a; and p; vanished, then the arm would be useless to
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position arbitrarily a point in space. The third condition, i.e., the vanishing of
zZ +yZ, means that point C lies on the Z; axis. Now, even if neither a; nor u;
vanishes, the manipulator can be postured in a configuration at which point C
lies on the Z; axis. Such a configuration is termed the first singularity. Note,
however, that with point C being located on the Z; axis, any motion of the first
joint, with the two other joints locked, does not change the location of C. For
the moment, it will be assumed that A; does not vanish, the particular cases
under which it does being studied presently. Next, both sides of eqs.(4.21a & b)
are squared, the squares thus obtained are then added, and the sum is equated
to 1, which leads to a quadratic equation in x3, namely,

Kc2+ Ls2+ Mczsz + Nes + Ps3+Q =0 (4.22)

whose coefficients, after simplification, are given below:

K =4ad2H? + piC? (4.232)
L =4a?I* + yiD? (4.23b)
M = 2(4a2HT + piCD) (4.23c)
N =2(4a?HJ + piCE) (4.23d)
P =2(4a21J + 2 DE) (4.23¢)
Q =4a3J? + piE? — 4ai i p? (4.23f)

with p? defined as
2_ 2 2
p=zotyYe
Now, two well-known trigonometric identities are introduced, namely,

_1-7

0
c3 = T , where 73 = tan(—2§) (4.24)

Sa = 03
SEIY 2
Henceforth, the foregoing identities will be referred to as the tan-half-angle
identities. We will be resorting to them throughout the book. Upon substitution
of the foregoing identities into eq.(4.22), a quartic equation in 73 is obtained,
i.e.,

R+ 813+ T2+ U +V =0 (4.25)

whose coefficients are all computable from the data. After some simplifications,
these coefficients take on the forms

R=4a}(J - H)? + p}(E - C)* - 4p%a3 13 (4.26a)
S = 4[4d21(J — H) + (2 D(E - C)] (4.26b)
T = 2[4a3(J? — H? + 2I°) + p2(E* — C? + 2D?)

—4p’aipi] (4.26¢)
U =4[4a2I(H + J) + 12D(C + E)] (4.26d)

V =4a}(J + H)? + p3(E + C)* — 4p*a313 (4.26¢)
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Furthermore, let { (73); }1 be the four roots of eq.(4.25). Thus, up to four
possible values of 83 can be obtained, namely,

(93),’ = 2a,rcta,n[(T3),~], 1= 1,2,3,4 (427)

Once the four values of 83 are available, each of these is substituted into
egs.(4.21a & b), which thus produce four different values of 8;. For each value
of 8; and 83, then, one value of 82 can be computed from the first two scalar
equations of eq.(4.17), which are displayed below:

A1y 088y + Ajasinfy = zocosfy + yosinb; — ay (4.28a)
—A12c086s + Aq18infy = ~xc A sindy + yo Ay costh
+ (2 — b1)n (4.28b)
where
A1l = as + az cos 3 + by sin 63 (4.28¢)
A12 = ~a3/\2 sin 03 + b3llz2 + b4A2/J,3 COS 93 + b4p,2>\3 (428(31)

Thus, if A3; and A;2 do not vanish simultaneously, angle 8, is readily com-
puted in terms of §; and 65 from eqs.(4.28a & b) as

cosfy = Ai{Au(wc cosb +yosinb; — ay)
2

—Aja[—zoAs sin by + yoA; cos by
+(z¢ — b))} (4.29a)

sinfy = Zl—{Alz(xo cosb; +yosind, —aq)
2

+ A11[—mc/\1 sin#, + yoAj cos 6,
+ (20 = bi)pl} (4.29b)

where A, is defined as

Ap = A} + Al
= a3 + a3(cos® 83 + A2 sin® 63) + bIp3(sin? 63 + A2 cos? 63)
+ 2a9a3 cos 03 + 2asbspug sin 83
+ 22 (b3 + baAz) (bajus cosfs — azsin 63)
+2a3bapiz p3 sin 03 cos fs + (bs + A3ba)> i3 (4.29¢)

the case in which Ay, = 0, which leads to what is termed here the second
singularity, being discussed presently.

Takano (1985) considered the solution of the positioning problem for all
possible combinations of prismatic and revolute pairs in the regional structure
of a manipulator, thereby finding that
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1. In the case of arms containing either three revolutes, or two revolutes and

one prismatic pair, with a general layout in all cases, a quartic equation
in cos 83 is obtained;

in the case of one revolute and two prismatic pairs, the positioning problem
was reduced to a single quadratic equation, the problem at hand thus
admitting two solutions;

finally, for three prismatic pairs, one single linear equation was derived,
the problem thus admitting a unique solution.

The Vanishing of A

In the above derivations we have assumed that neither y; nor a; vanishes. How-
ever, if either 3 = 0 or a; = 0, then one can readily show that eq.(4.25) reduces
to a quadratic equation, and hence, this case differs essentially from the gen-
eral one. Note that one of these conditions can occur, and the second occurs
indeed frequently, but both together never occur, because their simultaneous
occurrence would render the axes of the first two revolutes coincident. The ma-
nipulator would thus be short of one joint for the execution of three-dimensional
tasks. We thus have two cases:

1. p1 =0, a1 # 0. In this case,

A, B#0, F=G=0

Under these conditions, eq.(4.20a) and the tan-half-angle identities given
in eq.(4.24) yield

(J-—H)ri+2In+(J+H)=0
which thus produces two values of 73, namely,

I+VP - P+ H
J-H

(’1'3)1’2 = (4308,)
Once two values of §; have been determined according to the above equa-
tion, #; can be found using eq.(4.19a) and the tan-half-angle identities,
thereby deriving

(E'— A)1i +2B1 + (E' + A) =0

where 0
E' =Cecs+ Ds3 + E, 7 =tan <—2l>

whose roots are

BV —ET+ A2
(T1)1‘2 = A (430b)
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Thus, two values of 8; are found for each of the two values of 3, which
results in four positioning solutions. Values of 2 are obtained using
eqs.(4.29a & b).

2. a1 = 0, p1 # 0. In this case, one has an architecture similar to that of the
robot of Fig. 4.3. We have now

A=B=0, F,G#0
Under the present conditions, eq.(4.19a) reduces to
(E-C)r2 +2D13+(E+C) =0
which produces two values of 73, namely,

—D+ VD -2+ 7
E-C

With the two values of 63 obtained, #; can be found using eq.(4.20a) and
the tan-half-angle identities to produce

(J =P +2Gn +(J +F)=0

(7'3)1,2 = (4.313.)

where

J =Hes+Is3+J, 7 =tan (%)

whose roots are
—-G£VG?-J2 4+ F2
J—-F

(4.31b)

(7‘1)1,2 =

Once again, the solution results in a cascade of two quadratic equations,
one for 03 and one for 6;, which yields four positioning solutions. As
above, 6, is then determined using eqs.(4.29a & b). Note that for the
special case of the manipulator of Fig. 4.3, we have

ay=by=0, o =a3=90° ay=0°
and hence,
H=1=0, E=d}+ad+b}+b—[z%+ys+ (2c - b)?],
C =2aza3, D=2a3by, F=yo, G=—-2¢, J=0b;
In this case, the foregoing solutions reduce to

-D++/C?+ D? — E? zeo /2% + yd — bl
E_C y (e = ba —
3 —Yc

(7'3)1,2 =

A robot with the architecture studied here is the Puma, which is displayed
in Fig. 4.10 in its four distinct postures for the same location of its wrist center.
Notice that the orientation of the EE is kept constant in all four postures.
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(c)

Figure 4.10: The four arm configurations for the positioning problem of the
Puma robot: (a) and (b), elbow down; (a) and (c), shoulder fore; (¢) and (d),
elbow up; (b) and (d), shoulder aft

The Vanishing of A,

In some instances, Aq, as defined in eq.(4.29¢), may vanish at a certain pos-
ture, thereby preventing the calculation of 65 from eqs.(4.29a & b). This pos-
ture, termed the second singularity, occurs if both coefficients A4;; and Ajs
of eqs.(4.28a & b) vanish. Note that from their definitions, eqgs.(4.28¢ & d),
these coefficients are not only position- but also architecture-dependent. Thus,
an arbitrary manipulator cannot take on this configuration unless its geomet-
ric dimensions allow it. This type of singularity will be termed architecture-
dependent, to distinguish it from others that are common to all robots, regard-
less of their particular architectures.

We can now give a geometric interpretation of the singularity at hand: First,
note that the right-hand side of eq.(4.17), from which eqs.(4.28a & b) were
derived, is identical to Q¥ (¢ —a;), which means that this expression is nothing
but the Fs-representation of the position vector of C. That is, the components
of vector Q¥ (c—a; ) are the Fa-components of vector m . Therefore, the right-
hand sides of egs.(4.28a & b) are, respectively, the Xs- and Y>-components of
vector Oﬁ . Consequently, if 417 = A12 = 0, then the two foregoing components
vanish and, hence, point C' lies on the Z axis. The first singularity thus occurs
when point C lies on the axis of the first revolute, while the second occurs when
the same point lies on the axis of the second revolute.

Many industrial manipulators are designed with an orthogonal architecture,
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- (a) (b)

Figure 4.11: Architecture-dependent singularities of (a) the Cincinnati-Milacron
and (b) the Puma robots

which means that the angles between neighbor axes are multiples of 90°. More-
over, with the purpose of maximizing their workspace, orthogonal manipulators
are designed with their second and third links of equal lengths, thereby ren-
dering them vulnerable to this type of singularity. An architecture common to
many manipulators such as the Cincinnati-Milacron, ABB, Fanuc, and others,
comprises a planar two-axis layout with equal link lengths, which is capable
of turning about an axis orthogonal to these two axes. This layout allows for
the architecture singularity under discussion, as shown in Fig. 4.11(a). The
well-known Puma manipulator is similar to the aforementioned manipulators,
except that it is supplied with what is called a shoulder offset b3, as illustrated
in Fig. 4.3. This offset, however, does not prevent the Puma from attaining the
same singularity as depicted in Fig. 4.11(b). Notice that in the presence of this
singularity, angle 8 is undetermined, but #; and 83 are determined in the case
of the Puma robot. However, in the presence of the singularity of Fig. 4.11(a),
neither 6, nor 8, are determined; only 83 of the arm structure is determined.

Example 4.4.1 A manipulator with a common orthogonal architecture is dis-
played in Fig. 4.12 in an arbitrary configuration. The arm architecture of this
manipulator has the DH parameters shown below:

a1=a3:0, b1=b2=b3=0, 011:900, a2=0°
Find its inverse kinematics solutions.

Solution: A common feature of this architecture is that it comprises as = by.
In the present discussion, however, the latter feature need not be included, and
hence, the result that follows applies even in its absence. In this case, coefficients
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Figure 4.12: An orthogonal decoupled manipulator

C, D, and FE take on the forms
C=0, D=0, E=aj+a3— (% +yg+25)

Hence,

and so
Jl:O) F=yo, G=-z¢

The radical of eq.(4.31b) reduces to z% + y%. Thus,

+ /22 2 —-1+£+/1 2
tan (—9—1> = 2c ot Ye = + (yo/zo) (4.32a)
2 —yc yo/zc

Now we recall the relation between tan(6; /2) and tan 8y, namely,

01 . -1+ 1+tan291
tan <5) = r—y (4.32b)

Upon comparison of egs.(4.32a) and (4.32b), it is apparent that

@1 = arctan (?/_c_)
Tc

a result that can be derived geometrically for this simple arm architecture.
Given that the arctan(-) function is double-valued, its two values differing in
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Figure 4.13: An orthogonal RRR manipulator

180°, we obtain here, again, two values for ;. On the other hand, 83 is calcu-

lated from eq.(4.31a) as

VT ER
E-C
thereby obtaining two values of 5. As a consequence, the inverse positioning
problem of this arm architecture admits four solutions as well. These solutions
give rise to two pairs of arm postures that are usually referred to as elbow-up
and elbow-down.

(m3)12 =%

Example 4.4.2 Find all real inverse displacement solutions of the manipulator
shown in Fig. 4.13, when point C of its end-effector has the base coordinates
C(0, 2a, —a).

Solution: The Denavit-Hartenberg parameters of this manipulator are derived
from Fig. 4.14, where the coordinate frames involved are indicated. In defining
the coordinate frames of that figure, the Denavit-Hartenberg notation was fol-
lowed, with Z, defined, arbitrarily, as parallel to Z3. From Fig. 4.14, then, we
have

ag=ar=az3=by=by3=a, byi=by=0, a=ay=90° a3=0°

One inverse displacement solution can be readily inferred from the geometry
of Fig. 4.14. For illustration purposes, and in order to find all other inverse
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X

Figure 4.14: The coordinate frames of the orthogonal RRR manipulator

kinematic solutions, we will use the procedure derived above. To this end, we
first proceed to calculate the coefficients of the quartic polynomial equation,
eq.(4.25), which are given, nevertheless, in terms of coefficients K, ..., Q of
egs.(4.23a—1f). These coeflicients are given, in turn, in terms of coefficients A,
... J of eqs.(4.19b—f) and (4.20b—f). We then proceed to calculate all the
necessary coefficients in the proper order:
A=0, B=4d?, C=D=—E =2’
F=2a, G=H=0, I=J=a
Moreover,
K =4a*, L=8a', M=8d N=-8* P=0 Q=-8d',
The set of coefficients sought thus reduces to
R=K-N+Q = 4a*
S =2(P- M) = -16a*
T=2Q+2L—K)=28a*
U = 2(M + P) = 16a*
V=K+N+Q=-12a
which leads to a quartic equation, namely,

T§—4733+27'32+47’3—3=0
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with four real roots:
(s)y =(13)2 =1, (m3)3=-1, (73)s=3
These roots yield the 83 values that follow:
(63)1 = (B3)2 =90°, (B3)3 = —90°, (63)4 = 143.13°

The quartic polynomial thus admits one double root, which means that at the
configurations resulting from this root, two solutions meet, thereby producing
a singularity, an issue that is discussed in Subsection 5.4. Below, we calculate
the remaining angles for each solution: Angle 6; is computed from relations
(4.21a—c), where A; = —8a®.

The first two roots, (63)1 = (63)2 = 90°, yield ¢3 = 0 and s3 = 1. Hence,
eqs.(4.21a & b) lead to

_B(I+J) 4da*(a+a)

“a= Al - —8a3 =-1
. = F(D+E) 2a(2a® —2a%) _ 0
1= Al N —8a3 N

and hence,
(01)1 = (61)2 = 1800

With 6, known, 65 is computed from the first two of eqs.(4.17), namely,

co=0, s,=-1

and hence,
(02)1 - (02)2 = '—900

The remaining roots are treated likewise, thereby obtaining
(01)3 = 900, (02)3 = 0, (01)4 = 143.130, (92)4 =0

It is noteworthy that the architecture of this manipulator does not allow for
the second singularity, associated with A; = 0.

Example 4.4.3 For the same manipulator of Example 4.4.2, find all real in-
verse kinematic solutions when point C' of its end-effector has the base coordi-
nates C(0, a, 0), as displayed in Fig. 4.15.

Solution: In this case, one obtains, successively,
A=0, B=C=D=E=2d
F=a, G=0 H=0, I=J=a
K=4a°L = M =N =8a% P =16a% Q =4a®
R=0, S=16a° T =324a°% U=48a% V =16a°
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Zs

€ ~

Figure 4.15: Manipulator configuration for C(0, a, 0)

Moreover, for this case, the quartic eq.(4.22) degenerates into a cubic equation,
namely,

TS +215+33+1=0

whose roots are readily found as
(T3)1 = '—0.43016, (7’3)2,3 = —0.78492 :i:jl.30714

where j is the imaginary unit, i.e., j = +/—1. That is, only one real solution
is obtained, namely, (f3)1 = —46.551°. However, shown in Fig. 4.15 is a quite
symmetric posture of this manipulator at the given position of point C' of its
end-effector, which does not correspond to the real solution obtained above.
In fact, the solution yielding the posture of Fig. 4.15 disappeared because of
the use of the quartic polynomial equation in tan(f3/2). Note that if the two
contours derived from egs.(4.19a) and (4.20a) are plotted, as in Fig. 4.16, their
intersections yield the two real roots, including the one leading to the posture
of Fig. 4.15.

The explanation of how the fourth root of the quartic equation disappeared is
given below: Let us write the quartic polynomial in full, with a “small” leading
coefficient ¢, namely,

€ms + T3 4212 4313 +1=0
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Figure 4.16: Contours producing the two real solutions for Example 4.4.3

Upon dividing both sides of the foregoing equation by 7§, we obtain

1 2 3 1
e+ —+—5+—=5+—5=0
T3 T3 7—3 7-3
whence, apparently, the original equation is satisfled as ¢ — 0 if and only if
73 — too, i.e, if 83 = 180°. The missing root is, hence, 83 = 180°. The
remaining angles are readily calculated as

(01)1 = -—105.90, (02)1 = —149.350, (91)4 = 1800, (02)4 = 1800

4.4.2 The Orientation Problem

Now the orientation inverse displacement problem is addressed. This problem
consists in determining the wrist angles that will produce a prescribed orien-
tation of the end-effector. This orientation, in turn, is given in terms of the
rotation matrix Q taking the end-effector from its home attitude to its current
one. Alternatively, the orientation can be given by the natural invariants of
the rotation matrix, vector e and angle ¢. Moreover, since 6;, 83, and 83 are
available, Q1, Q2, and Qs become data for this problem. One now has the
general layout of Fig. 4.17, where angles {6; }§ are to be determined from the
problem data, which are in this case the orientation of the end-effector and the
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Figure 4.17: General architecture of a spherical wrist

architecture of the wrist; the latter is defined by angles a4 and ay, neither of
which can be either 0 or #.

Now, since the orientation of the end-effector is given, we know the compo-
nents of vector eg in any coordinate frame. In particular, let

£
[66 ]4 =17 (433)
¢

Moreover, the components of vector es in F4 are nothing but the entries of the
third column of matrix Qy4, i.e.,

44 8in B4
[65 ]4 = | —M4 COS 64 (434)
A4

Furthermore, vectors e and eg make an angle as, and hence,
eles=MX; or [es]Tes]s=As (4.35)
Upon substitution of egs.(4.33) and (4.34) into eq.(4.35), we obtain

Epasiny — npg cos8y + CAg = As (4.36)
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which can be readily transformed, with the aid of the tan-half-angle identities,
into a quadratic equation in 74 = tan(f4/2), namely,

(As — npa — ()75 — 26pama + (Ns +1pa — CAa) = 0 (4.37)
its two roots being given by

L= St VE )t — (s — ()
! A5 — (Ag — npa

(4.38)

Note that the two foregoing roots are real as long as the radical is positive,
the two roots merging into a single one when the radical vanishes. Thus, a
negative radical means an attitude of the EE that is not feasible with the wrist.
It is noteworthy that a three-revolute spherical wrist is kinematically equivalent
to a spherical joint. However, the spherical wrist differs essentially from a
spherical joint in that the latter has, kinematically, an unlimited workspace—
a physical spherical joint, of course, has a limited workspace by virtue of its
mechanical construction—and can orient a rigid body arbitrarily. Therefore,
the workspace W of the wrist is not unlimited, but rather defined by the set of
values of £, n, and ¢ that satisfy the two relations shown below:

E+n?+¢=1 (4.39a)
f(£7 yun C) = (62 + ?72)#3 - (’\5 - CA4)2 Z 0 (439b)

In view of condition (4.39a), however, relation (4.39b) simplifies to an inequality
in ¢ alone, namely,

F(¢)=¢* —2Xaxs¢ — (4 — M) <0 (4.40)
As a consequence,

1. W is a region of the unit sphere & centered at the origin of the three-
dimensional space;

2. W is bounded by the two parallels given by the roots of F({) = 0 on the
sphere;

3. the wrist attains its singular configurations along the two foregoing par-
allels.

In order to gain more insight on the shape of the workspace W, let us look
at the boundary defined by F({) = 0. Upon setting F(({) to zero, we obtain a
quadratic equation in {, whose two roots can be readily found to be

C1,2 = AaAs £ |paps) (4.41)

which thus defines two planes, II1 and IT5, parallel to the &7 plane of the three-
dimensional space, intersecting the (-axis at ¢; and (s, respectively. Thus, the
workspace W of the spherical wrist at hand is that region of the surface of
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the unit sphere S contained between the two paralles defined by II; and IT,.
For example, a common wrist design involves an orthogonal architecture, i.e.,
ay = ay = 90°. For such wrists,

C1,2 = ﬂ:l

and hence, orthogonal wrists become singular when [eg]s = [0, 0, £1]7, i.e.,
when the fourth and the sixth axes are aligned. Thus, the workspace of or-
thogonal spherical wrists is the whole surface of the unit sphere centered at the
origin, the singularity curve thus degenerating into two points, namely, the two
intersections of this sphere with the (-axis. If one views { = 0 as the equatorial
plane, then the two singularity points of the workspace are the poles.

An alternative design is the so-called three-roll wrist of some Cincinnati-
Milacron robots, with a4 = as = 120°, thereby leading to Ay = A5 = —1/2 and
p4 = ps = V/3/2. For this wrist, the two planes IT; and IT, are found below:
First, we note that with the foregoing architecture,

1
Goa=1,~2

2

and hence, the workspace of this wrist is the part of the surface of the unit
sphere S that lies between the planes IIy and I1s parallel to the £-n plane,
intersecting the (-axis at {; = 1 and {; = —1/2, respectively. Hence, if { =0
is regarded as the equatorial plane, then the points of the sphere S that are
outside of the workspace of this wrist are those lying at a latitude of less than
—30°. The singularity points are thus the north pole and those lying on the
parallel of latitude —30°.

Once 84 is calculated from the two foregoing values of 74, if these are real,
angle 85 is obtained uniquely for each value of 64, as explained below: First,
eq.(4.9a) is rewritten in a form in which the data are collected in the right-hand
side, which produces

QiQsQs =R (4.42a)

with R defined as
R=0Q;Q;Q{Q (4.42b)

Moreover, let the entries of R in the fourth coordinate frame be given as

11 Ti2 T13
[Rla=[ra1 722 723
T31 T32 733

Expressions for 85 and g can be readily derived by solving first for Q5 from
€q.(4.42a), namely,
Qs = Q{RQ] (4.43)

Now, by virtue of the form of the Q; matrices, as appearing in eq.(4.1e), it is
apparent that the third row of QQ; does not contain 6;. Hence, the third column
of the matrix product of eq.(4.43) is independent of 85. Thus, two equations for
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#; are obtained by equating the first two components of the third columns of
that equation, thereby obtaining

1585 = (6712 + Aer13)ca + (622 + A6T23)S4
—p5cs = —Aa(peT12 + A6T13)84 + Aa(Ueran + AeT23)ca + pa(pers2 + Aer3s)

which thus yield a unique value of 85 for every value of 84. Finally, with 84 and
85 known, it is a simple matter to calculate 8g. This is done upon solving for
Qg from eq.(4.42a), i.e.,

Qs = Q5 QiR

and if the partitioning (4.12) of Q; is now recalled, a useful vector equation is
derived, namely,

ps = QI Qi (4.44)
where r; is the first column of R. Let w denote the product QI ry, i.e.,
711C4 + 72184

—A4(r1184 — ro104) + par31
pa(r1184 — ro1ca) + Aar3

w=Qir

il

Hence,
wyCs + Wass
QgQIrl = )\5(—-10185 + U)ng) + wa s
ps (w185 — wacs) + wsds
in which w; denotes the ith component of w. Hence, ¢g and s¢ are determined
from the first two scalar equations of eq.(4.44), namely,

4 Zy

Figure 4.18: The two configurations of a three-axis spherical wrist

Ce = w1Cs + Wass
S6 = —W1As85 + WaAsCs + Walts
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thereby deriving a unique value of 8¢ for every pair of values (64, 65). In sum-
mary, then, two values of 84 have been determined, each value determining,
in turn, one single corresponding set of 5 and 8 values. Therefore, there are
two sets of solutions for the orientation problem under study, which lead to
two corresponding wrist postures. The two distinct postures of an orthogonal
three-revolute spherical wrist for a given orientation of its EE are displayed in
Fig. 4.18.

When combined with the four postures of a decoupled manipulator leading to
one and the same location of its wrist center—positioning problem—a maximum
of eight possible combinations of joint angles for a single pose of the end-effector
of a decoupled manipulator are found.

4.5 Exercises

4.1 Shown in Fig. 10.3 is the kinematic chain of one of the six-dof legs of
a flight simulator, whose architecture is defined by the HD parameters
of Table 10.1. In the flight simulator, M is the moving platform, to
which an aircraft cockpit is rigidly attached. The six-dof motion of M
is controlled by means of the six hydraulic cylinders identical to that
indicated in Fig. 10.3 as a prismatic joint. Find all inverse displacement
solutions of this manipulator, relating the pose of M with all the joint
variables.

4.2 Modify the solution procedure of Section 4.3 to obtain all the postures
of a PRR manipulator that give the same EE pose, and show that this
problem leads to a quartic polynomial equation.

4.3 Repeat Exercise 4.2 as pertaining to a PRP manipulator.

4.4 The manipulator appearing in Fig. 4.19 is of the orthogonal type, with
a decoupled, spherical wrist, and a regional structure consisting of two
parallel axes and one axis perpendicular to these two. Find all inverse
kinematics solutions for arbitrary poses of the EE of this manipulator.

4.5 Similar to the manipulator of Fig. 4.19, that of Fig. 4.20 is of the orthog-
onal, decoupled type, except that the latter has a prismatic pair. For an
arbitrary pose of its EE, find all inverse displacement solutions of this
manipulator.

4.6 Derive expressions for the angle of rotation and the unit vector parallel to
the axis of rotation of matrices Q;, as introduced in Section 4.2.

4.7 An orthogonal spherical wrist has the architecture shown in Fig. 4.18, with
the DH parameters
Qy = 900, a5 = 90°
A frame F7 is attached to its EE so that Z7 coincides with Zg. Find the
(Cartesian) orientation that can be attained with two inverse displace-
ment solutions @y and 8z, defining the two distinct postures, that lie the
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4.8

4.9

4.10

Figure 4.19: A six-revolute robot holding a heavy tool

farthest apart. Note that a distance between two manipulator postures
can be defined as the radical of the quadratic equation yielding the two
inverse kinematic solutions of the wrist, whenever the radical is positive.
Those postures giving the same EE orientation and lying farthest from
each other are thus at the other end of the spectrum from singularities,
where the two postures merge into a single one. Hence, the postures lying
farthest from each other are singularity-robust.

Given an arbitrary three-revolute manipulator, as shown in Fig. 4.9, its
singular postures are characterized by the existence of a line passing
through its operation point about which the moments of its three axes
vanish—see Exercise 3.3. Note that this condition can be readily applied
to manipulators with a simple architecture, whereby two successive axes
intersect at right angles and two others are parallel. However, more com-
plex architectures, like that of the manipulator of Fig. 4.13, are more elu-
sive in this regard. Find the line passing through the operation point and
intersecting the three axes of the manipulator of Fig. 4.13 at a singularity.
Hint: A singular posture of this manipulator was found in Example 4.4.2.

A robot of the Puma type has the architecture displayed in Fig. 4.3, with
the numerical values a; = 0.432 m, a3 = 0.020 m, b3 = 0.149 m, by =
0.432 m. Find its maximum reach R as well as the link length a of the
manipulator of Fig. 4.15 with the same reach R.

For the Fanuc Arc Mate 120iB robot displayed in Fig. 4.21, with the
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Figure 4.20: ABB-IRB 1000 robotic manipulator

dimensions included therein,

(a) Find its Denavit-Hartenberg parameters, using the Z; axes suggested
in Fig. 4.21(b).

(b) Apparently, the robot under study is of the decoupled type. Find
all its inverse-displacement solutions for an arbitrary pose of its end-

effector, assuming that the operation point is located at a point of
F+ coordinates [ 0.0, 100.0, 100.0]7 mm.
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Figure 4.21: Geometric information taken from the data sheet of an industrial
robot: (a) the top view; (b) an isometric view; (c) front view; and (d) side view



Chapter 5

Kinetostatics of Serial
Robots

5.1 Introduction

Kinetostatics is understood here as the study of the interplay between the fea-
sible twists of and the constraint wrenches acting on the various rigid bodies of
a mechanical system, when the system moves under static, conservative condi-
tions. The feasible twists of the various rigid bodies, or links, are those allowed
by the constraints imposed by the robot joints. The constraint wrenches are, in
turn, the reaction forces and moments exerted on a link by the links to which
that link is coupled by means of joints. The subject of this chapter is the kine-
tostatics of serial robots, with focus on six-axis manipulators. By virtue of the
duality between the kinematic and the static relations in the mechanics of rigid
bodies, as outlined in Section 3.7, the derivation of the kinematic relations is
discussed in detail, the static relations following from the former.

‘We derive first the relation between the twist of the robot EE and the set
of joint rates, which is given by a linear transformation induced by the robot
Jacobian matriz. Once the foregoing relation is established for a general six-
joint robot, the relation between the static wrench exerted by the environment
on the EE and the balancing joint torques is derived by duality. Special robotic
architectures are given due attention. Decoupled and planar architectures are
treated as special cases of six-joint robots. The fundamental problem of sin-
gularities arising from a singular robot Jacobian in decoupled manipulators is
given due attention as well. Two types of singularities are discussed here for the
regional structure of decoupled robots. As a follow-up to the singularity analy-
sis of this structure, its three-dimensional workspace is derived. An algorithm
is proposed for the display of this workspace as pertaining to general regional
structures whose inverse displacement analysis leads to a quartic polynomial.
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Figure 5.1: General n-axis manipulator

The chapter closes with a section on kinetostatic performance indices. The
purpose of these indices is twofold: They are needed in robot design to help the
designer best dimension the links of the robot in the early stages of the design
process, prior to the elastostatic and the elastodynamic design stages. These
indices are also needed in the control of & given robot to ensure an acceptable
kinetostatic performance under feedback control. One third, pragmatic appli-
cation of these indices is the comparison of various candidate robots when a
robotic facility is being planned.

Elastostatic design pertains to the structural design of a robot to ensure that
the links and the joint mechanical transmissions will be able to withstand the
static loads that arise when the robot is in operation. This aspect of design
is usually conducted under the assumption that all structural elements operate
within the linearly elastic range, and is valid at a specific robot posture. Elas-
todynamic design considers the inertial load of the structural elements while
accounting for link flexibility, which gives rise to mechanical vibration. The
main concern here is avoiding resonance under linear dynamical conditions or
limit cycles under nonlinear conditions. Both elastostatics and elastodynamics
lie beyond the scope of the book, and hence, will not be considered here.

5.2 Velocity Analysis of Serial Manipulators

The relationships between the prescribed twist of the EE, also referred to as
the Cartesian velocity of the manipulator, and the corresponding joint-rates
are derived in this section. First, a serial n-axis manipulator containing only
revolute pairs is considered. Then, relations associated with prismatic pairs are
introduced, and finally, the joint rates of six-axis manipulators are calculated in
terms of the EE twist. Particular attention is given to decoupled manipulators,
for which simplified velocity relations are derived.
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We consider here the manipulator of Fig. 5.1, in which a joint coordinate 8;,
a joint rate €;, and a unit vector e; are associated with each revolute axis. The
Xi, Yi, Z; coordinate frame, attached to the (i — 1)st link, is not shown, but its
origin O; is indicated. If the angular-velocity vector of the ith link is denoted
by w;, then we have, from Fig. 5.1,

Wwo = 0
w1 = élel
Wy = élel + égeg (5.1)

Wy = 9161 +9262 + "'+énen

and if the angular velocity of the EE is denoted by w, then
w=w, =010 +0ses+ - +0nen = bie;
1

Likewise, from Fig. 5.1, one readily derives
P=a +a+:--+a, (5.2)

where p denotes the position vector of point P of the EE. Moreover, notice that
all vectors of the above equation must be expressed in the same frame; otherwise,
the addition would not be possible—vector a; was defined as expressed in the
ith frame in eq.(4.3¢). Upon differentiating both sides of eq.(5.2), we have

P=a+as+--+an (5.3)
Since vector a; is fixed to the ith link,
a,=-w;xa;, 1=12,...,n (5.4)
Furthermore, substitution of egs.(5.1) and (5.4) into eq.(5.3) yields
p = b0ie; X a; + (B1e1 + bye2) X ag +

: (5.5)
+(9161 + ézez + -4+ 9nen) X ap

which can be readily rearranged as

p=~Ffie; x (a; +ay+---+ay,)+brey x (ag +az + - +ay)
+ o+ Opey, X ay,

Now vector r; is defined as that joining O; with P, directed from the former
to the latter, as depicted in Fig. 5.1, i.e.,

r;=a;+a;+ -+a, (5.6)
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and hence, p can be rewritten as

n
p= Z f;e; x r;
1
Further, let A and B denote the 3 x n matrices defined as

A=[e; e -+ e,] (5.7a)
B=[e; xr e;Xry --- epXry] (5.7b)

the n-dimensional joint-rate vector 0 being defined, in turn, as
0=16 6 - 6,7
Thus, w and p can be expressed in a more compact form as
w=A0, p=B9

the twist of the EE being defined, in turn, as

t= [“’} (5.8)

| &
The EE twist is thus linearly related to the joint-rate vector 8, i.e.,
Jo=t (5.9)
where J is the Jacobian matriz, or Jacobian, for brevity, of the manipulator

under study, first introduced by Whitney (1972). The Jacobian is defined as
the 6 X n matrix shown below:

A
I= {B} (5.102)
or
J= [ et e e ] (5.10b)
€1 XTIy €2 Xrg -+ e, Xr,

Apparently, an alternative definition of the foregoing Jacobian matrix can be

given as
_ ot

Y

Moreover, if j; denotes the ith column of J, one has

s e;
Ji = €; Xr;

It is noteworthy that if the axis of the ith revolute is denoted by R;, then
Ji is nothing but the Pliicker array of that line, with the moment of R; being
taken with respect to the operation point P of the EE.

J
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Figure 5.2: Shoulder singularity of the Puma robot

geometric representation of the nullspace of J,. The singularity displayed
in the foregoing figure, termed here the elbow singularity, pertains also to a
manipulator with the architecture of Fig. 4.3. Notice that motions along £
in the posture displayed in Fig. 5.3 are possible, but only in one direction,
from C to O,.

With regard to the wrist singularities, these were already studied when solv-
ing the orientation problem for the inverse displacement analysis of decoupled
manipulators. Here, we study the same in light of the sub-Jacobian J;o of
eq.(5.20b). This sub-Jacobian obviously vanishes when the wrist is so config-
ured that its three revolute axes are coplanar, which thus leads to

e4xe5~e6=0

Note that when studying the orientation problem of decoupled manipulators,
we found that orthogonal wrists are singular when the sixth and fourth axes
are aligned, in full agreement with the foregoing condition. Indeed, if these two
axes are aligned, then ey = —eg, and the above equation holds.

5.4.1 Manipulator Workspace

The workspace of spherical wrists for orientation tasks was discussed in Subsec-
tion 4.4.2. Here we focus on the workspaces of three-axis positioning manipu-
lators in light of their singularities.
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Figure 5.3: Elbow singularity of the Puma robot

~—R
] ﬂ
} Ze
-
4

(b)

(c)

Figure 5.4: Workspace of a Puma manipulator (a) top view; (b) cross-section;
and (c) perspective
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In order to gain insight into the problem, we study first the workspace of
manipulators with the architecture of Fig. 4.3. Figures 5.2 and 5.3 show such
a manipulator with point C at the limit of its positioning capabilities in one
direction, i.e., at the boundary of its workspace. Moreover, with regard to the
posture of Fig. 5.2, it is apparent that the first singularity is preserved if () point
C moves on a line parallel to the first axis and intersecting the second axis; and
(#4) with the second and third joints locked, the first joint goes through a full
turn. Under the second motion, the line of the first motion sweeps a circular
cylinder whose axis is the first manipulator axis and with radius equal to b3,
the shoulder offset. This cylinder constitutes a part of the workspace boundary,
the other part consisting of a spherical surface. Indeed, the second singularity
is preserved if (i) with point C in the plane of the second and third axes, the
second joint makes a full turn, thereby tracing a circle with center on Lq, a
distance bs from the first axis, and radius r = ag + /a2 + b3; and (i¢) with
point C' still in the plane of the second and third joints, the first joint makes
a full turn. Under the second motion, the circle generated by the first motion
describes a sphere of radius R = /b3 + r2 because any point of that circle lies a
distance R from the intersection of the first two axes. This point thus becomes
the center of the sphere, which is the second part of the workspace, as shown in
Fig. 5.4.

The determination of the workspace boundaries of more general manipula-
tors requires, obviously, more general approaches, like that proposed by Cec-
carelli (1996). By means of an alternative approach, Ranjbaran et al. (1992)
found the workspace boundary with the aid of the general characteristic equa-
tion of a three-revolute manipulator. This equation is a quartic polynomial, as
displayed in eq.(4.25). From the discussion of Subsection 4.4.1, it is apparent
that at singularities, two distinct roots of the IDP merge into a single one. This
happens at points where the plot of the characteristic polynomial of eq.(4.25) is
tangent to the 73 axis, which occurs in turn at points where the derivative of this
polynomial with respect to 73 vanishes. The condition for 83 to correspond to a
point C' on the boundary of the workspace is, then, that both the characteristic
polynomial and its derivative with respect to 73 vanish concurrently. These two
polynomials are displayed below:

P(r3)= Ry + S5 + T3 + Uns +V =0 (5.37a)
P'(13) = 4R75 + 3875 + 2T+ U =0 (5.37b)

with coefficients R, S, T, U, and V defined in egs.(4.26a—e). From these equa-
tions and eqs.(4.19d—f) and (4.20d-f), it is apparent that the foregoing coef-
ficients are solely functions of the manipulator architecture and the Cartesian
coordinates of point C. Moreover, from the same equations, it is apparent that
the above coefficients are all quadratic in p> = 22 +y2% and guartic in z¢. Thus,
since the Cartesian coordinates z¢ and yo do not appear in the foregoing coef-
ficients explicitly, the workspace is symmetric about the Z; axis, a result to be
expected by virtue of the independence of singularities from angle 8;. Hence,
the workspace boundary is given by a function f(p?, z¢) = 0 that can be derived
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by eliminating 73 from eqs.(5.37a & b). This can be readily done by resorting
to any elimination procedure, the simplest one being dialytic elimination, as
discussed below.

In order to eliminate 73 from the above two equations, we proceed in two
steps: In the first step, six additional polynomial equations are derived from
eqs.(5.37a & b) by multiplying the two sides of each of these equations by 73,
72, and 73, thereby obtaining a total of eight polynomial equations in 73, namely,

RII+ 8T8+ T +Urf + Vi =0
4R7$ +38m) + 2T + U =0
R+ St +Tri + U + Vi =0
4R7E + 38T + 2T + U =0
R} + ST+ T3 +Uri+Vr =0
AR7y + 3573 + 2772 + Uy =0
Ry +Sm3 +Tr3 +Uns+V =0
4R7) + 3573 + 2T+ U =0

In the second elimination step we write the above eight equations in linear
homogeneous form, namely,

Mr; =0 (5.38a)

with the 8 x & matrix M and the 8-dimensional vector 73 defined as

‘'R S T U V 0 0 07 g
0 4R 35 2T U 0 0 0 78
O R § T U V 0 0 3
0 0 4R 35 2T U 0 0 .
M=10 0 B s T U v of ™|z (5.38b)
0 0 0 4R 35 2T U 0 .
00 0 R S T U V 7
0 0 0 0 4R 35 2T U. 1

It is now apparent that any feasible solution of eq.(5.38a) must be nontrivial,
and hence, M must be singular. The desired boundary equation is then derived
from the singularity condition on M, i.e.,

(%, zo) = det(M) =0 (5.39)

As a matter of fact, function f(p?, 2¢) of eq.(5.39), known as the (polynomial)
resolvent of eqs.(5.37a & b), can be computed using computer algebra, upon
invoking the procedure to obtain the discriminant of eq.(5.37a).4

4 Although a quartic polynomial has, properly speaking, four discriminants (Yang, Hou and
Zeng, 1996), which are defined as the central minors of matrix M of eq.(5.39) when P(73)
is written in monic form—with leading coefficient equal to unity—the resolvent is sometimes
referred to as the discriminant in question.
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Regions Number of Solutions
Two Solutions A ;

Four Solutions

Figure 5.5: The workspace of the manipulator of Figs. 4.13-4.15

We used the foregoing procedure, with the help of computer algebra, to
obtain a rendering of the workspace boundary of the manipulator of Figs. 4.13—
4.15, the workspace thus obtained being displayed in Fig. 5.5. For the record,
the resolvent of this manipulator, given in eq.(5.39), turned out to be a 16th-
degree bivariate polynomial in p and 2¢, involving only even powers. That is,
the resolvent in question turns out to be a bivariate octic polynomial in p? and
2%. If we let 0 = p? and ¢ = 22, then

f(0,0) =+ (=240 + (T6? =320+ 27)¢% + (7T0® — 5402 + 970 — 42)¢5
+(350* —4000° + 121002 — 976 & + 283)¢* + (T0° — 1100* + 5100°
—68402 + 1230 — 70)¢% + (70 — 1446° + 965 0* — 2208 ¢° + 705 02
—2720 4 83)¢? + 8 (02 — 40 — 1)(c® — 220" + 154 6° — 3280
~1550 + 14)¢ + (6* — 240° +1900% — 5520 + 17) (6% — 40 —1)* =0

5.5 Acceleration Analysis of Serial Manipula-

tors
The subject of this section is the computation of vector 8 of second joint-variable
derivatives, also called the joint accelerations. This vector is computed from

Cartesian position, velocity, and acceleration data. To this end, both sides of
eq.(5.9) are differentiated with respect to time, thus obtaining

Jo=t-J6 (5.40)

and hence, ) .
0=J3"'t-1J6) (5.41)
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From eq.(5.40), it is apparent that the joint-acceleration vector is computed
in exactly the same way as the joint-rate vector. In fact, the LU decomposition
of J is the same in this case and hence, need not be recomputed. All that is
needed is the solution of a lower- and an upper-triangular system, namely,

Lz:i;—.ié, Ub=1z

The two foregoing systems are solved first for z and then for 8 by forward and
backward substitution, respectively. The first of the foregoing systems is solved
with M/ multiplications and A? additions; the second with M, multiplications
and Al additions. These figures appear in eqgs.(5.17b & c¢). Thus, the total
numbers of multiplications M; and additions A4; that the forward and backward
solutions of the aforementioned systems require are

My =n? A;=n(n-1) (5.42)

In eq.(5.40), the right-hand side comprises two terms, the first being the specified
time-rate of change of the twist of the EE, or twist-rate, for brevity, which is
readily available. The second term is not available and must be computed.
This term involves the product of the time-derivative of J times the previously
computed joint-rate vector. Hence, in order to evaluate the right-hand side of
that equation, all that is further required is J. From eq.(5.10a), one has

. A
= [5]
where, from eqs.(5.7a & b),
A=[é é - &] (5.43a)
B=[u; uy --- 11,] (5.43b)
and u; denotes e; X r;, for i = 1,2,...,n. Moreover,
él =Wp Xe = 0 (544&)
€; = W;_1 Xe=w; Xe, £=23,...,n (544b)
and
u;=e; Xr;+e; xr;, 1=12,...,n (5.44C)

Next, an expression for #; is derived by time-differentiating both sides of eq.(5.6),
which produces

r,=a+an+---+a, i=12,...n
Recalling eq.(5.4), the above equation reduces to

i‘izwixai+wi+1 Xajg+--+wy Xa, (545)
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Substitution of eqs.(5.44) and (5.45) into eqs.(5.43a & b) leads to
A:[O Wi Xey -+ Wpo1Xeq]
B—_—[el XT1 Wig XTg+eyXrfy --- wn_lmxrn+enx1‘n]

with 1y and wg ;41 defined as
n
i‘kEZwixai, k=1,...,n (5.46a)
k

WEk,k4+1 = Wi X €41, k= 1, I 1 (546b)

The foregoing expressions are invariant and hence, valid in any coordinate
frame. However, these expressions have to be incorporated into matrix J; then,
the latter is to be multiplied by vector 6, as indicated in eq.(5.40). Thus,
eventually all columns of both A and B will have to be represented in the same
coordinate frame. Hence, coordinate transformations will have to be introduced
in the foregoing matrix columns in order to have all of these represented in the
same coordinate frame, say, the first one. We then have the expansion below:

AN A R b (5.47)
n

The right-hand side of eq.(5.47) is computed recursively as described below in
five steps, the number of operations required being included at the end of each
step.

1. Compute {[w;]; }7:
[wilt « 91[91]1
Fori=1ton—1do
[wit1)irr « Oialeipn liva + QF [wils
enddo 8n—-1)M & 5(n—-1)A

2. Compute {[ez]z }?
fer]r « [0]s
For i =2 to n do
[61]z Lo [wi X ei],-

enddo 0M & 0A

3. Compute {[#;]; }1:
[frn]n < [wn Xan]s
Fori=n—-1to 1 do
[ti]i « [wixa;]s + Qu[Tig1 ]inr
enddo (14n—8)M & (10n—~T7)A
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4. Compute {[10;]); }T using the expression appearing in eq.(5.44c):
[1'11]1 (‘[91XI"1]1 Fori=2to n do

[l'li]i — [éi Xr;+e; X l",']i
enddo dn—-1)M & 3n—-1)A

5. Compute Jo

Letv=J 0, which is a 6-dimensional vector. A coordinate transformation
of its two 3-dimensional vector components will be implemented using the
6 x 6 matrices U;, which are defined as

_{Q: O
Ui:[o Qi]

where O stands for the 3x 3 zero matrix. Thus, the foregoing 6 x 6 matrices
are block-diagonal, their diagonal blocks being simply the matrices Q;
introduced in Section 4.2. One then has the algorithm below:

[v]n 8, [z:]
n

Fori=n—1to 1 do

[V]i — 0.1' [31:‘ +U¢[V]1‘+1
i

enddo
Jo v 20(n—1)+4M & 13(n—1) A

thereby completing the computation of J@.

The figures given above for the floating-point operations involved were ob-
tained based on a few facts, namely,

1. It is recalled that [e; ]; = [0, 0, 1]T. Moreover, if welet [w]; = [wg, wy, w,]T
be an arbitrary 3-dimensional vector, then

[eixw]i=| w,

0
this product thus requiring zero multiplications and zero additions.

2. [&;);, computed as in eq.(5.44b), takes on the form [wy, —w;, 0]7, where
wy and wy are the X; and Y; components of w;. Moreover, let [r;]; =
[z, y, 2]T. Then

— 2y
[éi X ri]i = —ZWy
TWy + Ywy

and this product is computed with four multiplications and one addition.
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3. As found in Section 5.3, any coordinate transformation from F; to Fiy1,
or vice versa, of any 3-dimensional vector is computed with eight multi-
plications and four additions.

_ Thus, the total numbers of multiplications and additions required to compute
J@ in frame Fi, denoted by M; and Ay, respectively, are as shown below:

Mj;=4Tn—-37, A;=31n-—28

Since the right-hand side of eq.(5.40) involves the algebraic sum of two 6-
dimensional vectors, then, the total numbers of multiplications and additions
needed to compute the aforementioned right-hand side, denoted by M, and A,
are

M, =4 —37, A.=3ln—22

These figures yield 245 multiplications and 164 additions for a six-revolute ma-
nipulator of arbitrary architecture. Finally, if the latter figures are added to
those of eq.(5.42), one obtains the numbers of multiplications and additions re-
quired for an acceleration resolution of a six-revolute manipulator of arbitrary
architecture as

M, =281, A, =194

Furthermore, for six-axis, decoupled manipulators, the operation counts of
steps 1 and 2 above do not change. However, step 3 is reduced by 42 multipli-
cations and 30 additions, whereas step 4 by 12 multiplications and 9 additions.
Moreover, step 5 is reduced by 63 multiplications and 39 additions. With re-
gard to the solution of eq.(5.40) for 8, an additional reduction of floating-point
operations, or flops, is obtained, for now we need only 18 multiplications and 12
additions to solve two systems of three equations with three unknowns, thereby
saving 18 multiplications and 18 additions. Thus, the corresponding figures for
such a manipulator, M, and A, respectively, are

M =146, A, =98

5.6 Static Analysis of Serial Manipulators

In this section, the static analysis of a serial n-axis manipulator is undertaken,
six-axis decoupled manipulators being treated as special cases. Let 7; be either
the torque acting at the ith revolute or the force acting at the ith prismatic
pair. Moreover, let T be the n-dimensional vector of joint forces and torques,
whose ith component is 7;, whereas w = [nT, fT]7 denotes the wrench exerted
by the environment on the EE, with n denoting the resultant moment and f
the resultant force applied at point P of the end-effector of the manipulator of
Fig. 5.1. Then, the power exerted on the manipulator by all forces and moments
acting on the EE is

Mg =wlt=nTw+fTp
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whereas the power II; exerted on the manipulator by all joint motors is
;=776 (5.48)

Under static, conservative conditions, there is neither power dissipation nor
change in the kinetic energy of the manipulator, and hence, the two foregoing
powers are equal, which is just a restatement of the First Law of Thermody-
namics or, equivalently, a form of the Principle of Virtual Work, i.e.,

wit =770 (5.49a)
Upon substitution of eq.(5.9) into eq.(5.49a), we obtain
wlJ6 =176 (5.49b)

which is a relation valid for arbitrary 8. Under these conditions, if J is not
singular, eq.(5.49b) leads to
w=r (5.50)

This equation relates the wrench acting on the EE with the joint forces and
torques exerted by the actuators. Therefore, this equation finds applications
in the sensing of the wrench w acting on the EE by means of torque sensors
located at the revolute axes. These sensors measure the motor-supplied torques
via the current flowing through the motor armatures, the sensor readouts being
the joint torques—or forces, in the case of prismatic joints—{ 7% }7, grouped in
vector T.

For a six-axis manipulator, in the absence of singularities, the foregoing
equation can be readily solved for w in the form

w=JTr

where J-7 stands for the inverse of JT. Thus, using the figures recorded in
eq.(5.16b), w can be computed from eq.(5.50) with 127 multiplications and 100
additions for a manipulator of arbitrary architecture. However, if the manip-
ulator is of the decoupled type, the Jacobian takes on the form appearing in
eq.(5.19), and hence, the foregoing computation can be performed in two steps,
namely,

T
J12nw = Tw
T T
J21f =Tqa — Jlll’lw

where n,, is the resultant moment acting on the end-effector when f is applied
at the center of the wrist, while T has been partitioned as

T= [T" ]
Tw
with 7, and 7, defined as the wrist and the arm torques, respectively. These
two vectors are given, in turn, as
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Hence, the foregoing calculations, as pertaining to a six-axis, decoupled manip-
ulator, are performed with 55 multiplications and 37 additions, which follows
from a result that was derived in Section 5.2 and is summarized in eq.(5.23).

In solving for the wrench acting on the EE from the above relations, the
wrist equilibrium equation is first solved for n,,, thus obtaining

ny, =I5 T (5.51)

where J1,7 stands for the inverse of J7,, and is available in eq.(5.29). Therefore,
1
nwz——[(e5><e6) (66X84) (e4xe5)]1'w

12
1
= Z;[T4(e5 X 86) +’7’5(€6 X e4) +T6(e4 X 65)] (5.52)
Now, if we let
To =T, —Jny (5.53)

we have, from eq.(5.28),
7—‘
f:[u2><u3 uz X ug U1XUQ]J—
As
where
u; =e; Xr;
or
1

f= A_Ql[?l(uz X 113) +?2(U3 X 111) +?3(ll1 X 112)] (554)

5.7 Planar Manipulators

Shown in Fig. 5.6 is a three-axis planar manipulator. Note that in this case, the
DH parameters b; and «; vanish, for 1 = 1,2, 3, the nonvanishing parameters a;
being indicated in the same figure. Below we proceed with the displacement,
velocity, acceleration, and static analyses of this manipulator. Here, we recall
a few relations of planar mechanics that will be found useful in the discussion
below.

A 2 x 2 matrix A can be partitioned either columnwise or rowwise, as shown
below:

A=[a b]= [;ﬁ]

where a, b, ¢, and d are all 2-dimensional column vectors. Furthermore, let E
be defined as an orthogonal matrix rotating 2-dimensional vectors through an
angle of 90° counterclockwise. Hence,

E= [0 —1] (5.55)

We thus have
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Fact 5.7.1

and hence,
Fact 5.7.2

E2=-1

where 1 is the 2 x 2 identity matrix. Moreover,
Fact 5.7.3

det(A) = —a"Eb =bTEa = —c"Ed = d"Ec
and
Fact 5.7.4

41 bT _ 1
A= Gty | S| P e

5.7.1 Displacement Analysis

The inverse displacement analysis of the manipulator at hand now consists in
determining the values of angles 8;, for i = 1, 2, 3, that will place the end-effector
so that its operation point P will be positioned at the prescribed Cartesian
coordinates x, ¥ and be oriented at a given angle ¢ with the X axis of Fig. 5.6.
Note that this manipulator can be considered as decoupled, for the end-effector
can be placed at the desired pose by first positioning point Oz with the aid of
the first two joints and then orienting it with the third joint only. We then solve
for the joint angles in two steps, one for positioning and one for orienting,.
We now have, from the geometry of Fig. 5.6,

ajc) +ascio =2

a181 + a2812 = Y

where z and y denote the Cartesian coordinates of point O3z, while ¢;5 and s34
stand for cos(61 + 62) and sin(6; + 62), respectively. We have thus derived two
equations for the two unknown angles, from which we can determine these angles
in various ways. For example, we can solve the problem using a semigraphical
approach similar to that of Subsection 9.4.

Indeed, from the two foregoing equations we can eliminate both ¢;2 and 839
by solving for the second terms of the left-hand sides of those equations, namely,

asCia = T — a1Ct (5.56a)
Q9812 =Y — a181 (5.56Db)
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Figure 5.6: Three-axis planar manipulator

Figure 5.7: The two real solutions of a planar manipulator
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Figure 5.8: The two real values of 8; giving the two postures depicted in Fig. 5.7

If both sides of the above two equations are now squared, then added, and the
ensuing sum is equated to a2, we obtain, after simplification, a linear equation
in ¢; and s; that represents a line £ in the ¢;-s; plane:

L: —a? + a3 + 2a1ze; +2a1ys1 — (22 +43) =0 (5.57)

Apparently, the two foregoing variables are constrained by a quadratic equation
defining a circle C in the same plane:

C: A+si=1

which has a unit radius and is centered at the origin of the c¢i-s; plane. The
real roots of interest are then obtained as the intersections of £ and C. Thus,
the problem can admit (i) two real and distinct roots, if the line and the circle
intersect; (i7) one repeated root if the line is tangent to the circle; and (4i7) no
real root if the line does not intersect the circle.

With ¢; and s; known, angle 6; is fully determined. Note that the two real
intersections of £ with C provide each one value of ¢, as depicted in Fig. 5.8.

Once 8; and 62 are available, 63 is readily derived from the geometry of
Fig. 5.6, namely,

03 =¢ — (61 +02)

and hence, each pair of (61, 62) values yields one single value for 5. Since we
have two such pairs, the problem admits two real solutions.

5.7.2 Velocity Analysis

Velocity analysis is most easily accomplished if the general velocity relations
derived in Section 5.2 are recalled and adapted to planar manipulators. Thus
we have, as in eq.(5.9), )

Jo=t (5.58a)
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where now,

61
J=| & e e3 ]7 ] [ézjl, tz[;] (5.58b)

€] XI1 €y Xrg e3Xr3 é
3

Il

and {r; }} are defined as in eq.(5.6), i.e., as the vectors directed from O; to P.
As in the previous subsection, we assume here that the manipulator moves in
the X-Y plane, and hence, all revolute axes are parallel to the Z axis, vectors
e; and ry, for i = 1,2, 3, thus taking on the forms

0 x;
er=er=e=e= |0, r;=]y;
1 0
with t reducing to )
t=[0 0 ¢ @p yp 0]7 (5.58¢)
in which £p and ¢p denote the components of the velocity of P. Thus,
—yi-
e; Xr; = T
0

and hence, the foregoing cross product can be expressed as

ES,‘ |

e Xr; = 0

where E was defined in eq.(5.55) and s; is the 2-dimensional projection of r; onto
the X-Y plane of motion, i.e.,s; = [2; ¥; 7. Equation (5.58a) thus reduces to

0o 0 0 0
1 1 1|, |é

ES1 E82 E53 0= p (559)
0 0 0 0

where 0 is the 2-dimensional zero vector and p is now reduced top = [, ]7. In
summary, then, by working only with the three nontrivial equations of eq.(5.59),
we can represent the velocity relation using a 3 x 3 Jacobian in eq.(5.58a). To
this end, we redefine J and t as

N S T | _[é
J:[Esl E52 ES3]’ t:[p] (560)

The velocity resolution of this manipulator thus reduces to solving for the three
joint rates from eq.(5.58a), with J and t defined as in eq.(5.60), which thus leads
to the system below:

6, ;
S O I B I
[Es1 Esy Ess] 32 “[p] (5.60)
3
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Solving for { 8;}3 is readily done by first reducing the system of equations
appearing in eq.(5.58a) to one of two equations in two unknowns by resort-
ing to Gaussian elimination. Indeed, if the first scalar equation of eq.(5.61) is
multiplied by Es; and the product is subtracted from the 2-dimensional vector
equation, we obtain

01
1 1 1 ) é
0 E(s2—s;) E(ss— 51):| zz - [p _ (ZsESl} (5.62)

from which a reduced system of two equations in two unknowns is readily ob-
tained, namely,

[E(52 — Sl) E(S3 - Sl)] [g;} = p e d)ESl (563)

The system of equations (5.63) can be readily solved if Fact 5.7.4 is recalled,
namely,

. - ‘
[Zﬂ = —i— [ (S‘_ SB)TEE] E(p - ¢Esi)
_1 [ (ss —s1)T(p— ¢'5E51) ]
A | ~(s2—s1)" (D — ¢Es1)
where A is the determinant of the 2 x 2 matrix coeflicient of eq.(5.63), i.e.,
A =det([E(sy —s1) E(sz3—s1)]) = —(s2 —s1)TE(s3 — 1) (5.64)
We thus have

(83 — SI)T(p — (i’ESI)
(82 — 8 )TE(Sg — Sl)

b = (s2 —s1)T (P — ¢Es1)
° (s2 —81)TE(s3 — s1)

6y = — (5.65a)

(5.65b)

Further, §; is computed from the first scalar equation of eq.(5.61), i.e.,
01 = — (62 + 63) (5.65¢)

thereby completing the velocity analysis.

The foregoing calculations are summarized below in algorithmic form, with
the corresponding numbers of multiplications and additions indicated at each
stage. In those numbers, we have taken into account that a multiplication of E
by any 2-dimensional vector incurs no computational cost, but rather a simple
rearrangement of the entries of this vector, with a reversal of one sign.

1. d3; ¢ s2— 8 0M + 24
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2. d3; < s3 — 81 0M +24
3. A+ di Edy 2M + 14
4. u « p — ¢Bs; 2M + 24
5. u  u/A 2M + 04
6. 8y « uTdy 2M + 14
7. 03 «— —uTdy oM +1A
8. 6y« ¢—0y— 05 OM + 24

The complete calculation of joint rates thus consumes only 10M and 114,
which represents a savings of about 67% of the computations involved if Gaus-
sian elimination is applied without regarding the algebraic structure of the Ja-
cobian J and its kinematic and geometric significance. In fact, the solution of an
arbitrary system of three equations in three unknowns requires, from eq.(5.16a),
28 additions and 23 multiplications. If the cost of calculating the right-hand
side is added, namely, 44 and 6 M, a total of 32A and 29M is required to solve
for the joint rates if straightforward Gaussian elimination is used.

5.7.3 Acceleration Analysis

The calculation of the joint accelerations needed to produce a given twist rate of
the EE is readily accomplished by differentiating both sides of eq.(5.58a), with
definitions (5.60), i.e., L

JO+JO0 =t
from which we readily derive a system of equations similar to eq.(5.58a) with 8
as unknown, namely,

Jo=1i-1736
where ..
. 0 0 0 . 01 . é
I=\gs, Es, Es, |0 95|02 tz[ﬁ]
03
and

é3 = (91 + 92 + 93)Ea3
§2 = 4y + 83 = (61 + 62)Eay + 83
§1 =4a; +8 =0,Ea; +8;
Now we can proceed by Gaussian elimination to solve for the joint accelera-

tions in exactly the same manner as in Subsection 5.7.2, thereby obtaining the
counterpart of eq.(5.63), namely,

[E(s2 —s1) E(sz —s1)] [gz] =w (5.66a)
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with w defined as
w =P — E(0181 + 0980 + 0353 + ds1) (5.66b)

and hence, similar to eqs.(5.65a—), one has

by = Ssﬁ—_zlﬂ (5.67a)
by = —W (5.67b)
él = ¢ - (92 + 93) (5.67¢)

Below we summarize the foregoing calculations in algorithmic form, indicat-
ing the numbers of operations required at each stage.

1. 83 « (01 + 62 + 63)Eay oM & 24
2. 8 + (61 + 62)Bay + 53 2M & 34
3. 81 + 0,Ea; + 5, 2M & 2A
4. W p —E(0181 + 6282 + 0383 + ds1) 8M & 84
5 w4+ w/A 2M + 04
6. 8 « wlds 2M +1A
7. 03 « —wTldy oM +1A
8. 0y « ¢ — (62 + s) OM +2A4

where dg;, d3;, and A are available from velocity calculations. The joint acceler-
ations thus require a total of 20 multiplications and 19 additions. These figures
represent substantial savings when compared with the numbers of operations re-
quired if plain Gaussian elimination were used, namely, 33 multiplications and
35 additions.

It is noteworthy that in the foregoing algorithm, we have replaced neither
the sum 8; + 65 + 63 nor élE(sl + s2 + s3) by w and correspondingly, by p,
because in path tracking, there is no perfect match between joint and Cartesian
variables. In fact, joint-rate and joint-acceleration calculations are needed in
feedback control schemes to estimate the position, velocity, and acceleration
errors by proper corrective actions.

5.7.4 Static Analysis

Here we assume that the environment exerts a planar wrench on the EE of the
manipulator appearing in Fig. 5.6. In accordance with the definition of the
planar twist in Subsection 5.7.2, eq.(5.60), the planar wrench is now defined as

w = [?] (5.68)
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where n is the scalar couple acting on the EE and f is the 2-dimensional force
acting at the operation point P of the EE. If additionally, we denote by 7 the 3-
dimensional vector of joint torques, the planar counterpart of eq.(5.50) follows,
i.e.,

Tw=r (5.69)
where
1 (ESl)
JT=11 (Esy)T
1 (Bsy)”

Now, in order to solve for the wrench w acting on the end-effector, given the joint
torques T and the posture of the manipulator, we can still apply our compact
Gaussian-elimination scheme, as introduced in Subsection 5.7.2. To this end, we
subtract the first scalar equation from the second and the third scalar equations
of eq.(5.69), which renders the foregoing system in the form

0 [E(sy —s1)]” =|mn-n

1 (Bsy)T n T
0 [E(ss —s1)]” [ ]

T3 —T1

Thus, the last two equations have been decoupled from the first one, which
allows us to solve them separately, i.e., we have reduced the system to one of
two equations in two unknowns, namely,

[[E(s2 —sl)]T] £ [TQ —n] (5.70)

[E(ss —s1)]7 T3 —T1

from which we readily obtain

£ [[E(S2*Sl)]T]_l [Tz—ﬁ] (5.71)

T
[E(s3 — 51)] 73— T1
and hence, upon expansion of the above inverse,

1

f= Z[(Tz—ﬁ)(ss—81)—(73—7'1)(52—81)] (5.72)

where A is exactly as defined in eq.(5.64). Finally, the resultant moment n
acting on the end-effector is readily calculated from the first scalar equation of
eq.(5.69), namely, as

n=rm +s Ef
thereby completing the static analysis of the manipulator under study. A quick

analysis of computational costs shows that the foregoing solution needs 8 M and
6A, or a savings of about 70% if straightforward Gaussian elimination is applied.
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5.8 Kinetostatic Performance Indices

Chapters 6 and 7 do not depend on this section, which can thus be skipped in
an introductory course based on the first half of the book. We have included
this section because (%) it is a simple matter to render the section self-contained,
while introducing the concept of condition number and its relevance in robotics;
(1%) kinetostatic performance can be studied with the background of the mate-
rial included up to this section; and (#41) kinetostatic performance is becoming
increasingly relevant as a design criterion and as a figure of merit in robot
control.

A Einetostatic performance indez of a robotic mechanical system is a scalar
quantity that measures how well the system behaves with regard to force and
motion transmission, the latter being understood in the differential sense, i.e., at
the velocity level. Now, a kinetostatic performance index, or kinetostatic index
for brevity, may be needed to assess the performance of a robot at the design
stage, in which case we need a posture-independent index. In this case, the
index becomes a function of the robot architecture only. If, on the other hand,
we want to assess the performance of a given robot while performing a task,
what we need is a posture-dependent index. This difference is often overlooked
in the robotics literature, although it is extremely important. Moreover, while
performance indices can be defined for all kinds of robotic mechanical systems,
we focus here on those associated with serial manipulators, which are the ones
studied most intensively.

Among the various performance indices that have been proposed, one can
cite the concept of service angle, first introduced by Vinogradov et al. (1971),
and the conditioning of robotic manipulators, as proposed by Yang and Lai
(1985). Yoshikawa (1985), in turn, introduced the concept of manipulability,
which is defined as the square root of the determinant of the product of the
manipulator Jacobian by its transpose. Paul and Stevenson (1983) used the
absolute value of the determinant of the Jacobian to assess the kinematic per-
formance of spherical wrists. Note that Yoshikawa’s manipulability is identical
to the absolute value of the determinant of the Jacobian, and hence, the latter
coincides with Paul and Stevenson’s performance index. It should be pointed
out that these indices were defined for control purposes and hence, are posture-
dependent. Germane to these concepts is that of dextrous workspace, introduced
by Kumar and Waldron (1981), and used for geometric optimization by Vijayku-
mar et al. (1986). Although the concepts of service angle and manipulability
are apparently different, they touch upon a common underlying issue, namely,
the kinematic, or alternatively, the static performance of a manipulator from
an accuracy viewpoint. For this reason, we refer to these indices generically as
kinetostatic.

What is at stake when discussing the manipulability of a robotic manipulator
is a measure of the invertibility of the associated Jacobian matrix, since this is
required for velocity and force-feedback control. One further performance index
is based on the condition number of the Jacobian, which was first used by
Salisbury and Craig (1982) to design mechanical fingers. Here, we shall use this
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concept to define the kinetostatic conditioning index of the manipulator. For
the sake of brevity, we devote the discussion below to only two indices, namely,
manipulability and conditioning. Prior to discussing these indices, we recall a
few facts from linear algebra.

Although the concepts discussed here are equally applicable to square and
rectangular matrices, we shall focus on the former. First, we give a geometric
interpretation of the mapping induced by a n x n matrix A. Here, we do not
assume any particular structure of A, which can thus be totally arbitrary. How-
ever, by invoking the polar-decomposition theorem (Strang, 1988), we can factor
A as

A=RU=VR (5.73)

where R is orthogonal, although not necessarily proper, while U and V are both
at least positive-semidefinite. Moreover, if A is nonsingular, then U and V are
both positive-definite, and R is unique. Apparently,

ATA=TU? or AAT =V? (5.74)

and hence, U (V) can be readily determined as the positive-semidefinite or
correspondingly, positive-definite square root of the product AT A (AAT), which
is necessarily positive-semidefinite at least; it is, in fact, positive-definite if A
is nonsingular. We recall here that the square root of arbitrary matrices was
briefly discussed in Subsection 2.3.6. The square root of a positive-semidefinite
matrix can be most easily understood if that matrix is assumed to be in diagonal
form, which is possible because such a matrix is necessarily symmetric, and
every symmetric matrix is diagonalizable. The matrix at hand being positive-
semidefinite, its eigenvalues are nonnegative, and hence, their square roots are all
real. The positive-semidefinite square root of interest is, then, readily obtained
as the diagonal matrix whose nontrivial entries are the nonnegative square roots
of the above-mentioned eigenvalues. With U or V determined, R can be found
uniquely only if A is nonsingular, in which case U and V are positive-definite.
If this is the case, then we have

R=AU!=V-lA (5.75a)

It is a simple matter to show that U and V are related by a similarity transfor-
mation, namely,
V = RURT (5.75b)

Now, as a consequence of the above relation between U and V, both matrices
share the same set of nonnegative eigenvalues {o;}7, which are termed the
singular values of the given matrix A. Furthermore, if the eigenvectors of U are
denoted by {u;}} and those of V by {v;}7, then the two sets are related by a
similarity transformation as well:

vi=Ru;, i=1,...,n (5.76)
Now, let vector x be mapped by A into z, i.e.,

z = Ax = RUx (5.77a)
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Figure 5.9: Geometric representation of mapping induced by matrix A

Moreover, let
y=Ux (5.77b)

and hence, we have a concatenation of mappings: U maps x into y, while R
maps y into z. Thus, by virtue of the nature of matrices R and U, the latter
maps the unit n-dimensional ball into a n-axis ellipsoid whose semiaxis lengths
bear the ratios of the eigenvalues of U. Moreover, R maps this ellipsoid into
another one with identical semiaxes, except that it is rotated about its center
or reflected, depending upon whether R is proper or improper orthogonal. The
eigenvalues of U or, for that matter, those of V, are thus nothing but the singular
values of A. Yoshikawa (1985) explained the foregoing relations resorting to the
singular-value decomposition theorem. We prefer to invoke the polar-decompo-
sition theorem instead, because of the geometric nature of the latter, as opposed
to the former, which is of an algebraic nature—it is based on a diagonalization
of either U or V, which is really not needed.

We illustrate the two mappings U and R in Fig. 5.9, where we orient the
X,Y, and Z axes along the three eigenvectors of U. Therefore, the semiaxes of
the ellipsoid are oriented as the eigenvectors of U as well. If A is singular, then
the ellipsoid degenerates into one with at least one vanishing semiaxis. On the
other hand, if matrix A is isotropic, i.e., if all its singular values are identical,
then it maps the unit ball into another ball, either enlarged or shrunken.

For our purposes, we can regard the Jacobian of a serial manipulator as
mapping the unit ball in the space of joint rates into a rotated or reflected
ellipsoid in the space of Cartesian velocities, or twists. Now, let us assume that
the polar decomposition of J is given by R and U, the manipulability y of the
robot under study thus becoming

1 = |det(3)] = |det(R)]|det(U)| (5.78a)

Since R is orthogonal, the absolute value of its determinant is unity. Addi-
tionally, the determinant of U is nonnegative, and hence,

p = det(U) (5.78b)
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which shows that the manipulability is the product of the eigenvalues of U or
equivalently, of the singular values of J. Now, the product of those singular
values, in the geometric interpretation of the mapping induced by J, is propor-
tional to the volume of the ellipsoid at hand, and hence,  can be interpreted
as a measure of the volume of that ellipsoid. It is apparent that the manipula-
bility defined in eq.(5.78b) is posture-dependent. For example, if J is singular,
at least one of the semiaxes of the ellipsoid vanishes, and so does its volume.
Manipulators at singular configurations thus have a manipulability of zero.

Now, if we want to use the concept of manipulability to define a posture-
independent kinetostatic index, we have to define this index in a global sense.
This can be done in the same way as the magnitude of a vector is defined,
namely, as the sum of the squares of its components. In this way, the global
manipulability can be defined as the integral of a certain power of the manip-
ulability over the whole workspace of the manipulator, which would amount
to defining the index as a norm of the manipulability in a space of functionsS.
For example, we can use the maximum manipulability attained over the whole
workspace, thereby ending up with what would be like a Chebyshev norm®; al-
ternatively, we can use the root-mean square (rms) value of the manipulability,
thereby ending up with a measure similar to the Euclidean norm.

The condition number of a square matrix is a measure of the relative roundofi-
error amplification of the computed results upon solving a linear system of equa-
tions associated with that matrix, with respect to the relative roundoff error of
the data (Dahlquist and Bjorck, 1974; Golub and van Loan, 1989). Based on
the condition number of the Jacobian, a posture-independent kinetostatic con-
ditioning index of robotic manipulators can be defined as a global measure of
the condition number.

The definition of the condition number (Golub and van Loan, 1989) requires
that all the entries of the matrix at hand bear the same physical units, which
we assume first, in order to introduce the concept. The more frequent case
of disparate units will be treated in the sequel. The condition number of a
dimensionally homogeneous Jacobian J is defined as

w(I) = 13T (5.79)
where |} - || stands for a matrix norm (Golub and van Loan, 1989). While any
norm can be used in the above definition, the one that is most convenient for
our purposes is the Frobenius norm || - ||r, defined as”

1 1
13|F = \/atr(JJT) = \/ﬁtr(Vz) (5.80a)

5Lack of familiarity with the mathematics of functions regarded as elements of vector
spaces, what is called functional analysis, should not discourage the reader from continuing,
for the balance of the book does not depend on these concepts.

6 A norm is a generalization of the absolute value of real numbers, but applicable to arrays.
In the same way that a vector norm is a measure of the “size” of the vector components, a
matrix norm is a measure of the “size” of the matrix entries. In this vein, the Chebyshev
norm of a given vector (matrix) is the largest absolute value of its components (entries).

7 Actually, the definition of eq.(5.80a) yields what is known as the wieghted Frobenius norm,
which gives a unit norm for the n x n identity matrix, regardless of the value of n.
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where we have assumed that J is of nxn. Moreover, from the polar-decomposition
theorem and Theorem 2.6.4, one can readily verify that

13]|r = \/ %tr(JTJ) = \/ %tr(UZ’) (5.80b)

Now, since the trace of a matrix is nothing but the sum of the matrix eigenvalues,
it is apparent that the Frobenius norm is identical with the rms value of the set
of singular values of the given matrix. Likewise,

13 = \/ %tr(J—lJ—T) _ \/ %tr[(JTJ)—l] _ \/ %tr[(JJT)—l] (5.81)

and hence, computing the Frobenius norm of J~! requires the inversion not of
J itself, but rather that of JTJ, or of JIT for that matter. Furthermore, while
J is not frame-invariant under a change of Cartesian-coordinate frame, JJ7 is.
As a consequence, the latter lends itself better to a symbolic inversion than J
itself. Hence, the Frobenius condition number kg is derived as

= _\/tr(U'z Ytr(U-2) \/tr(V2 Ytr(V—2) (5.82)

Furthermore, if the matriz 2-norm is used in definition (5.79), then

1 1
|12 = m;jxx{cri} =ou, [T Y= m?x{;} =— (5.83a)
where
Om = min{o;} (5.83b)

It is noteworthy that both the Frobenius norm and the 2-norm are given in
terms of the matrix singular values. As a consequence, these two norms are
frame-invariant. The 2-norm condition number k2(J) is thus given by

Ka(d) = M (5.84)

Om

Now we can state a fundamental result:

Theorem 5.8.1 The condition number based on either the 2-norm or the Frobe-
nius norm of the robot Jacobian is invariant to changes of frame. In this light,
the said condition numbers are immutable under a change of by, which amounts
to o translation of frame Fi, or of 81, which amounts to looking ot the robot from
o frame rotated by this angle about Zy. Moreover, angle o, not depending on
the robot architecture, but on the location of the task frame, neither influences
the same condition numbers.

Note that, regardless of the norm adopted, the condition number can attain
values from unity to infinity. Apparently, the condition number attains its
minimum value of unity for matrices with identical singular values; such matrices
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map the unit ball into another ball, although of a different size, and are, thus,
called isotropic. By extension, isotropic manipulators are those whose Jacobian
matrix can attain isotropic values. On the other side of the spectrum, singular
matrices have a smallest singular value that vanishes, and hence, their condition
number is infinite. The condition number of J can be thought of as indicating
the distortion of the unit ball in the space of joint-variables. The larger this
distortion, the greater the condition number, the worst-conditioned Jacobians
being those that are singular. For these, one of the semiaxes of the ellipsoid
vanishes and the ellipsoid degenerates into what would amount to an elliptical
disk in the 3-dimensional space.

Now, if the entries of J have different units, its condition number is unde-
fined, for we would face a problem of either adding or ordering from largest to
smallest singular values of different units. Staffetti, Bruyninckx and De Schut-
ter (2002) called kinetostatic performance indices of manipulators with such a
Jacobian matrix “non-invariant” to changes of norms. The same authors went
on to claim that, because of this feature, such performance indices—Staffetti
et al. refer to these indices as “manipulabilty indices”—are not natural. We
will leave aside the discussion of whether the indices at stake are invariant or
not, to focus instead on means to cope with the problem at hand. We resolve
the inconsistency of physical units by defining a characteristic length, by which
we divide the Jacobian entries that have units of length, thereby producing a
new Jacobian that is dimensionally homogeneous. We shall therefore divide our
study into () manipulators for only positioning tasks, (44) manipulators for only
orientation tasks, and (#i4) manipulators for both positioning and orientation
tasks. The characteristic length will be introduced when studying the third
category.

In the sequel, we will need an important property of isotropic matrices that
is recalled below. First note that if A is isotropic, all its singular values are
identical, say equal to ¢, and hence, matrices U and V are proportional to the
n x n identity matrix, i.e.,

U=V =901 (5.85)
In this case, then,
A =0R (5.86a)

which means that isotropic square matrices are proportional to orthogonal ma-
trices. As a consequence, then,

ATA = AAT =61 (5.86b)

Given an arbitrary manipulator of the serial type with a Jacobian matrix whose
entries all have the same units, we can calculate its condition number and use a
global measure of this to define a posture-independent kinetostatic index. Let
K be the minimum value attained by the condition number of the dimension-
ally homogeneous Jacobian over the whole workspace, regardless of the norm
adopted. Note that 1/k,, can be regarded as a Chebyshev norm® of the re-
ciprocal of the condition munber, because now 1/k,, represents the maximum

8in a space of functions.
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value of this reciprocal in the whole workspace. We then introduce a posture-
independent performance index, the kinetostatic conditioning index, or KCI for
brevity, defined as

KCI = —— x 100% (5.87)

m

Notice that since the condition number is bounded from below, the KCI is
bounded from above by a value of 100%. Manipulators with a KCI of 100% are
those identified above as isotropic.

5.8.1 Positioning Manipulators

Here, again, we shall distinguish between planar and spatial manipulators.
These are studied separately.

Planar Manipulators

If the manipulator of Fig. 5.6 is limited to positioning tasks, we can dispense
with its third axis, the manipulator thus reducing to the one shown in Fig. 5.7;
its Jacobian reduces correspondingly to

J= [ES1 ESQ]

with s; denoting the two-dimensional versions of vectors r; of the Denavit-
Hartenberg notation, as introduced in Fig. 5.1. Now, if we want to design
this manipulator for maximum manipulability, we resort to eq.(5.78a), whence
p = |det(J)|. First, notice that

det(J) = det(E[s; s2]) = det(E)det([s1 s2])

and since matrix E is orthogonal, its determinant equals unity. Thus, the de-
terminant of interest is now calculated using Fact 5.7.3 of Section 5.7, namely,

det(J) = —sTEs, (5.88)

Therefore,
g = [s{ Esa| = [|s1|l|sz]l| sin(s1, s2)]

where (s;, s2) stands for the angle between the two vectors inside the parenthe-
ses. Now let us denote the manipulator reach with R, i.e., R = a; + az, and let
ar = Rpy, where py, for k = 1,2, is a dimensionless number. As illustrated in
Fig. 5.10, ||s2|| | sin(s1,s2)| = h, the height of triangle 0104 P of base O, P, and
hence, u turns out to be twice the area of the same triangle, with the notation
adopted at the outset.

Moreover, in terms of the base 0,02 = a, and the height as|sin 85|, the area
of the triangle becomes ajas|sinf,|/2, and hence,

p = arag|sinbz| = R*pyps| sin by (5.89a)
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P(z,Y)

Figure 5.10: A planar, two-axis positioning manipulator, with 8; =0

with p; and p2 subject to
p1+p2=1 (5.89b)

The design task at hand, i.e., finding a1 and a2, can then be formulated as an
optimization problem aimed at maximizing ;4 as given in eq.(5.89a) over p; and
P2, subject to the constraint (5.89b). This optimization problem can be readily
solved using, for example, Lagrange multipliers, thereby obtaining

1 T
= = — 6 = +—
p1 = p2 5 72 2
the absolute value of sin#, attaining its maximum value when 8, = £90°. The
maximum manipulability thus becomes
R2
Pmax = T (5.90)

Incidentally, the equal-length condition maximizes the workspace volume as
well.

On the other hand, if we want to minimize the condition number of J, we
should aim at rendering J isotropic, which means that the product J7J should
be proportional to the identity matrix, and so,

s{s; sfsy] _[02 O
[sfsz sgsz)] - [0 02}
where ¢ is the repeated singular value of J. Hence, for J to be isotropic, all we
need is that the two vectors s; and s2 have the same norm and that they lie at
right angles. The solution is a manipulator with link lengths observing a ratio
of v/2/2, i.e., with az/a; = v/2/2, and the two link axes at an angle of 135°,
as depicted in Fig. 5.11. Manipulators of the above type, used as mechanical
fingers, were investigated by Salisburg and Craig (1982), who found that these

manipulators can be rendered isotropic if given the foregoing dimensions and
configured as shown in Fig. 5.11.
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Figure 5.11: A two-axis isotropic manipulator

Spatial Manipulators

Now we have a manipulator like that depicted in Fig. 4.9, its Jacobian matrix
taking on the form

J={e; Xxr; e xry e3xr;] (5.91)

The condition for isotropy of this kind of manipulator takes on the form of
€q.(5.86b), which thus leads to

ller x r12 (e1 xr))T(eg x1y) (e xr1)7(e3 x r3)
(61 X rl)T(ez X I'g) ||82 X I'2||2 (82 X r2)T(e3 X I‘3) = 0'21
(e1 X rl)T(e3 X 1‘3) (62 X rg)T(e3 X 1‘3) Heg X l‘3”2

(5.92)
Hence, the manipulator under study can be postured so as to attain isotropy
if its dimensions are chosen so that its three columns have the same Euclidean
norm and are mutually orthogonal. These conditions can be attained by various
designs, one example being the manipulator of Fig. 4.15. Another isotropic
manipulator for 3-dimensional positioning tasks is displayed in Fig. 5.12.

Note that the manipulator of Fig. 5.12 has an orthogonal architecture, the
ratio of its last link length to the length of the intermediate link being, as in
the 2-dimensional case, 1/2/2. Since the first axis does not affect singularities,
neither does it affect isotropy, and hence, not only does one location of the
operation point exist that renders the manipulator isotropic, but a whole locus,
namely, the circle known as the isotropy circle, indicated in the same figure. By
the same token, the manipulator of Fig. 5.11 has an isotropy circle centered at
the center of the first joint, with a radius of (v/2/2)a;.
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isotropy circle
— =

Figure 5.12: An isotropic manipulator for 3-dimensional positioning tasks

5.8.2 Orienting Manipulators

We now have a three-revolute manipulator like that depicted in Fig. 4.17, its
Jacobian taking on the simple form

J=[e1 (<)) e3] (593)

and hence, the first isotropy condition of eq. (5.86b) leads to

elTel eTeg e?es
JTI = | eles eles ele; | =01 (5.94)

ele; ele; ele;

What the foregoing condition states is that a spherical wrist for orienting tasks
is isotropic if its three unit vectors {e;,}} are so laid out that they are mutually
orthogonal, which thus yields J = 1, the 3 x 3 identity matrix. Since the three
singular values of 1 are all equal to unity, i.e., 0 = 1, JTJ = JJ7 = 1 as
well. This is the case in orthogonal wrists when the two planes defined by the
corresponding pairs of neighboring axes are at right angles. In summary, then,
orthogonal wrists, which are rather frequent among industrial manipulators,
are isotropic. Here we have an example of engineering insight leading to an
optimum design, for such wrists existed long before isotropy was introduced
as a manipulator design criterion. Moreover, notice that from the results of
Subsection 4.4.2, spherical manipulators with an orthogonal architecture have
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a maximum workspace volume. That is, isotropic manipulators of the spherical
type have two optimality properties: they have both a maximum workspace
volume and a maximum KCI. Apparently, the manipulability of orthogonal
spherical wrists is also optimal, as the reader is invited to verify, when the wrist
is postured so that its three axes are mutually orthogonal. In this posture, the
manipulability of the wrist is unity.

5.8.3 Positioning and Orienting Manipulators

We saw already in Subsubsection 5.8.1 that the optimization of the two indices
studied here—the Jacobian condition number and manipulability—leads to dif-
ferent manipulators. In fact, the two indices entail even deeper differences, as
we shall see presently. First and foremost, as we shall prove for both planar
and spatial manipulators, the manipulability p is independent of the operation
point P of the end-effector, while the condition number is not. One more fun-
damental difference is that while calculating the manipulability of manipulators
intended for both positioning and orienting tasks poses no problem, the condi-
tion number cannot be calculated, at least directly, for this kind of manipulator.
Indeed, in order to determine the condition number of the Jacobian matrix, we
must either add or order from largest to smallest its singular values. However,
in the presence of positioning and orienting tasks, three of these singular val-
ues, those associated with orientation, are dimensionless, while those associated
with positioning have units of length, thereby making impossible such an order-
ing. We resolve this dimensional inhomogeneity by introducing a normalizing
characteristic length. Upon dividing the three positioning rows, i.e., the bottom
rows, of the Jacobian by this length, a nondimensional Jacobian is obtained
whose singular values are nondimensional as well. The characteristic length is
then defined as the normalizing length that renders the condition number of
the Jacobian matrix a minimum. While this definition does not bear a direct
geometric interpretation, in general, we shall see that such an interpretation is
possible for isotropic manipulators. Below we shall determine the character-
istic length for isotropic manipulators; determining the same for nonisotropic
manipulators requires solving a minimization problem that calls for numerical
techniques, as illustrated with examples.

Planar Manipulators

In the sequel, we will need the planar counterpart of the twist-transfer formula
of Subsection 3.4.2. First, we denote by t4 the 3-dimensional twist of a rigid
body undergoing planar motion—introduced in eq.(5.60)—when defined at a
point A; when defined at point B, the corresponding twist is denoted by tg,
ie.,

ta = [:] tg = [ﬂ (5.95)
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The relation between the two twists, or the planar twist-transfer formule, is
given by a linear transformation U as

tp =TUty (5.96a)
where U is now defined as a 3 x 3 matrix, namely,

1 OT}

Bb—a) 1, (5.96b)

U= [
with a and b representing the position vectors of points A and B, and 1,
standing for the 2 x 2 identity matrix. Moreover, U is, not surprisingly, a
member of the 3 x 3 unimodular group, i.e.,

det(U) =1

Because of the planar twist-transfer formula, the Jacobian defined at an oper-
ation point B is related to that defined at an operation point A of the same
end-effector by the same linear transformation U, i.e., if we denote the two
Jacobians by J4 and Jp, then

Jp=Uly (5.97)

and if we denote by g4 and pp the manipulability calculated at points A and
B, respectively, then

pp = |det(Ip)| = |det(U)||det(I0)] = |det@a)| = pa  (5.98)

thereby proving that the manipulability is insensitive to a change of operation
point, or to a change of end-effector, for that matter. Note that a similar analysis
for the condition number cannot be completed at this stage because, as pointed
out earlier, the condition number of these Jacobian matrices cannot even be
calculated directly.

In order to resolve the foregoing dimensional inhomogeneity, we introduce
the characteristic length L, which will be defined as that rendering the Jacobian
dimensionally homogeneous and optimally conditioned, i.e., with a minimum
condition number. We thus introduce the normalized Jacobian matrix as

< _[ 1 1 1
J:[%Esl iEs, 1Bs, (5.99)

Now, if we want to size the manipulator at hand by properly choosing its ge-
ometric parameters so as to render it isotropic, we must observe the isotropy
condition, e.g., the second of eq.(5.86b), which readily leads to

3 3 (xisf) BT "0

_|%
1B se #E [T} (sis])| BT 0

o O

(5.100)

(V]

0

Q
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and hence,
o>=3 (5.101a)
3 3
<Z s{) ET or Y s=0 (5.101b)
1 1
1 3
73 (Z(Sks{)> ET = 0?1, (5.101c)
1

What eq.(5.101a) states is simply that the triple singular value of the isotropic
J is v/3; eq.(5.101b) states, in turn, that the operation point is the centroid of
the centers of all manipulator joints if its Jacobian matrix is isotropic. Now, in
order to gain insight into eq.(5.101c), we note that since E is orthogonal and
62 = 3, this equation can be rewritten in a simpler form, namely,

= (Z@ks}f)) = ()1, (5.102)

1

Further, if we recall the definition of the moment of inertia of a rigid body, we
can immediately realize that the moment of inertia Ip of a set of particles of
unit mass located at the centers of the manipulator joints, with respect to the
operation point P, is given by

3
Ip = Y (lIskl®12 — sesy) (5.103)
1

from which it is apparent that the moment of inertia of the set comprises two
parts, the first being isotropic—it is a multiple of the 2 x 2 identity matrix—the
second not necessarily so. However, the second part has the form of the left-hand
side of eq.(5.102). Hence, eq.(5.102) states that if the manipulator under study
is isotropic, then its joint centers are located, at the isotropic configuration, at
the corners of a triangle that has circular inertial symmetry. What we mean by
this is that the 2 x 2 moment of inertia of the set of particles, with entries I,
Iy, and Iy, is similar to that of a circle, i.e., with I, = I, and I;;, = 0. An
obvious candidate is an equilateral triangle, the operation point thus coinciding
with the center of the triangle. Since the corners of an equilateral triangle are
at equal distances d from the center, and these distances are nothing but ||s||,
the condition below is readily derived for isotropy:

Iskll* =d®, k=1,2,3 (5.104)

In order to compute the characteristic length of the manipulator under study,
let us take the trace of both sides of eq.(5.102), thereby obtaining

1 3
=3 llsel? =6
1
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Figure 5.13: The planar 3-R isotropic manipulator

and hence, upon substituting eq.(5.104) into the foregoing relation, an expres-
sion for the characteristic length, as pertaining to planar isotropic manipulators,
is readily derived:

3

L= —23(1 (5.105)

It is now a simple matter to show that the three link lengths of this isotropic
manipulator are a; = as = v/3d and a3 = d. Such a manipulator is sketched at
an isotropic posture in Fig. 5.13.

We now can give a geometric interpretation of the characteristic length for
the case at hand: To this end, we look at the manipulator of Fig. 5.13 from an
arbitrary viewpoint outside of the manipulator plane, as depicted in Fig. 5.4.
Let this plane be X-Y, with origin at O;, and X-axis directed towards Os.
Next, we look at a point O on the normal to the X-Y plane passing through
the operation point P, a distance h from P.

Further, we define vectors {r;}} as

ri=@—5,’, 1=1,2,3
Upon imposing the condition that the set {r;}3 be orthogonal, we find h as

Therefore, the characteristic length L renders matrix LJ isotropic. In fact, this
matrix becomes
L L L

Ly = ESl E52 ES3

(5.107)
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Figure 5.14: A geometric interpretation of the characteristic length
of the planar 3R isotropic manipulator.

for {s;}} valued at the isotropic posture of Fig. 5.13. Notice that the difference
between the Jacobian matrix defined in eq.(5.60) and matrix LJ lies only in
their first row. Obviously, the former is not dimensionally homogeneous; the
latter is.

Spatial Manipulators

The entries of the Jacobian of a six-axis manipulator intended for both posi-
tioning and orienting tasks are dimensionally inhomogeneous as well. Indeed,
as discussed in Section 5.2, the ith column of J is composed of the Plicker
coordinates of the ith axis of the manipulator, namely,

e e e e e e
€1 XTIy € XTIy €3 XT3 €4 XTIy €5 XTIy € XTIg

Now it is apparent that the first three rows of J are dimensionless, whereas
the remaining three, corresponding to the moments of the axes with respect to
the operation point of the end-effector, have units of length. This dimensional
inhomogeneity is resolved in the same way as in the case of planar manipulators
for both positioning and orienting tasks, i.e., by means of a characteristic length.
This length is defined, again, as the one that minimizes the condition number
of the dimensionless Jacobian thus obtained. We then define the corresponding
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normalized Jacobian as

J= ey (=D es ey es €s
T |feixri tesxry fe3xry fesXry fes XI5 feg X Tg
(5.109)
and hence, the second isotropy condition of eq.(5.86b) leads to
6
Z erel =01 (5.110a)
1
6
> epler xr)T =0 (5.110b)
1
18
—L—2 Z(ek X rk)(ek X rk)T = 021 (5.1100)
1

where 1 is the 3 x 3 identity matrix, and O is the 3 x 3 zero matrix. Now, if we
take the trace of both sides of eq.(5.110a), we obtain

62=2 or o=v2
Furthermore, we take the trace of both sides of eq.(5.110c), which yields

6
1
T2 Z llex x ry]|? = 302
1

But |jex, x ri[|% is nothing but the square of the distance dy, of the kth revolute
axis to the operation point, the foregoing equation thus yielding

6
> d
1

i.e., the characteristic length of o spatial siz-revolute isotropic manipulator is
the root-mean square of the distances of the revolute axes to the operation point
when the robot finds itself at the posture of minimum condition number.

Furthermore, eq.(5.110a) states that if { ey }¢ is regarded as the set of posi-
tion vectors of points { P }$ on the surface of the unit sphere, then the moment-
of-inertia matrix of the set of equal masses located at these points has spherical
symmetry. What the latter means is that any direction of the 3-dimensional
space is a principal axis of inertia of the foregoing set. Likewise, eq.(5.110c)
states that if {e; x ry }$ is regarded as the set of position vectors of points
{ Q4 } in the 3-dimensional Euclidean space, then the moment-of-inertia matrix
of the set of equal masses located at these points has spherical symmetry as
well.

Now, in order to gain insight into eq.(5.110b), let us take the axial vector of
both sides of that equation, thus obtaining

L =

S| =
£

6
D erx(epx1p) =0 (5.111)
1
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Table 5.1: DH Parameters of DIESTRO

1 | a; (mm) | b; (mmm) a; 9;
1 50 50 90° | 64
2 50 50 —-90° | 6,
3 50 50 90° | 63
4 50 50 —90° | 04
5 50 50 920° | 85
6 50 50 —90° | 6s

with 0 denoting the 3-dimensional zero vector. Furthermore, let us denote by
E;, the cross-product matrix of ey, the foregoing equation thus taking on the
form

6
> Eir, =0
1

However,

El = -1 +epel
for every k, and hence, eq.(5.111) leads to

6

2(1 - ekeg)rk =0

1

Moreover, (1 — ege] )ry is nothing but the normal component of ry with respect
to ey, as defined in Section 2.2. Let us denote this component by rkL, thereby
obtaining an alternative expression for the foregoing equation, namely,

Zrkl =0 (5.112)

1

The geometric interpretation of the above equation is now apparent: Let O}, be
the foot of the perpendicular to the kth revolute axis from the operation point
P; then, 1 is the vector directed from O}, to P. Therefore, the operation point
of an isotropic manipulator, configured at the isotropic posture, is the centroid
of the set { O, }$ of perpendicular feet from the operation point.

A six-axis manipulator designed with an isotropic architecture, DIESTRO, is
displayed in Fig. 5.15. The Denavit-Hartenberg parameters of this manipulator
are given in Table 5.1. DIESTRO is characterized by identical link lengths a
and offsets identical with this common link length, besides twist angles of 90°
between all pairs of neighboring axes. Not surprisingly, the characteristic length
of this manipulator is a.
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Figure 5.15: DIESTRO, a six-axis isotropic manipulator in two postures: (a)
with the arm extended upwards; (b) with the arm down, showing the orthogo-
nality of the neighboring axes

5.8.4 Computation of the Characteristic Length: Appli-
cations to Performance Evaluation

‘We elaborate further on the concept of characterictic length. In order to provide
a better grasp of the concept, we focus on its computation as pertaining to a
given robot, that need not be isotropic. To do this, we include two examples,
one planar and one spatial, industrial robot. Once a numerical value of the
characteristic length is available, we can compute the minimum value of the
condition number of the robot Jacobian, with which we can assess the robot
kinetostatic performance by means of the KCI.

Example 5.8.1 (A planar, equilateral, three-revolute robot) Compute
the characteristic length of the robot of Fig. 5.16, depicting a posture in which
¢, has been set equal to zero. What is the KCI of this robot?

Solution: We have a1 = az = a3 = a for the robot under study. In order to
compute its length, we have to minimize the Jacobian condition number by a
proper choice of the characteristic length L and the joint variables 85 and 6;.
We thus start by deriving an expression for the Jacobian:

1 1 1

J= ESI ESz ES3
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p

Figure 5.16: Equilateral, three-revolute planar robot

Now, we render J dimensionally homogeneous by introducing the characteristic
length L, thus obtaining the normalized Jacobian J:

3 - [ 1 1 1 ]
(1/L)Es; (1/L)Es; (1/L)Es;
From the manipulator geometry, we have,
R i vl N el B R bl
with
€1 =cosby, c¢g=sinfs, c¢15 = cos(br +02), 123 = cos(fy + 02 +83)

81 =sinfy, sy =sinfy, 13 =sin(fy +62), S123 = sin(@y + 65 + 63)

Since we set 8; = 0, because the first joint does not affect the condition number,
the normalized Jacobian becomes

1 1 1
J=| —r(s2a+s23) —r(s2+523) —rsas|, r=
(1 +ca+co3) 7r(ca+coz)  Teas

the inverse of J, as derived with computer algebra, being

. s3/82 co/(rsa) 1/r
J = | —(s3+s2)/s2 —(1+c)/(rs2) —1/r
(82 -+ 823)/82 1/(7‘82) 0

The square of the Frobenius-norm condition number of J is now computed as

Ky = fg
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with f and g defined as the square of the weighted Frobenius norms of J and
J _1, respectively, i.e.,

_ —T— 4 2
=11 = 5@ T =1+ (2+ 2 ot it -c23) 2

3 3 3
and
=7 —1”2 _ (s2 + 823)2 + (83 + 823)% + 52 224‘62
- F 3s2 3 r2s2
which can be rewritten as
f=1+4r
and
_1D+ E/r?
3 s

with coefficients A, D and E independent of r, namely,

A== (3+62+203+C23)

D= (82 + 823)° + (53 + 523)° + 53
E=2(2+¢)

We now have a classical minimization problem:

D+ Efr?
2 — = - — 1
Fr = f - 3(1 + A ) S% r,rglzl,%a

where the characteristic length is implicit in . While the foregoing problem is
well posed, we should not forget that xr is unbounded from above. In order
to gain better insight into the problem at hand, it is preferable to treat the
problem as one of maximization of 1/kr, or of its square, for that matter. As
well, we can dispense with the constant factor 1/3 in %, which thus leads to
the maximization problem below:

IH

— max
r,02,03

Q
P

with P and @ defined as
P=ADr* + (AE+D)>+ E, Q=r’s2

In order to obtain the optimum values of the three design variables r, 65,
and 03, we need to set up the normality conditions of the problem at hand.
These are readily obtained upon zeroing the gradient of % with respect to the
vector of design variables, defined as x = [ r 6y 85 ]T. The said conditions
are, thus,
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The three components of the above gradient, 8z/9r, 82/88,, and 8z/06;, are
then derived using the general formula for the derivative of a rational expression:

a [QY _ 1 b ‘
81:1_ (']3) - ﬁ(QzP QP’L)

where Q; and P; stand for 8Q/dz; and 8P/dx;, with z; taking values of r, 82,
and 63, for 7 = 1, 2, 3, respectively. We thus have, using a similar notation for
the partial derivatives of coefficients A, D and E:
P, = 4ADr® + 2(AE + D)r, Qi =2rs?
P, = (AsD + AD2)7A + (AE + AEs + .Dz)’l~2 + Es, Q2= 2r2s9Cy
= (A3D + AD3)7‘4 + (A3E + AE;3 + D3)7‘2 +E;, Q3=0

Apparently, E3 = 0, the normality conditions thus simplifying to

g; = 2}’;32% (—ADr* + E) =0

8692 TS ([2ADcs — (AsD + ADg)salr* + [2(AE + D)es
(AQE + AE, + Dy)s5] 1> + 2Ecy — Eysy} = 0

gg—s =— T;f? [(AsD + AD3)r® + (AsE + D3)] =0

thereby obtaining a system of three nonlinear equations in three unknowns,
namely, the three design variables. Apparently, all three normality conditions
are satisfied for either » = 0 or s3 = 0, which just confirms that the normality
conditions are sufficient for a point in the design space to be stationary; such a
point can be a local minimum, a local mazimum or a saddle point. The vanishing
of the product rs, thus yields a minimum of z, which indicates kp — oo, r =0
giving an architecture singularity, s = 0 a posture singularity. We are not
interested, for our purposes, on such a minimum, for which reason we assume
henceforth that rsy # 0. Under this condition, the normality conditions thus
yield the reduced system of equations

$1=—-ADr* + E=0

¢2 = [2ADcy — (A2 D + AD5)sy]rt + [2(AE + D)cy — (A2E + AE, + Dy)sy)r?
+2Fc¢cy — Fy89 =0

$3 = (A3D + AD3)r? + (AsE+D3) =0

The problem at hand is thus solved by finding the roots of the foregoing
system. We can do this by means of the Newton-Raphson method, for example,
which (¢) requires the 3 x 3 Jacobian matrix of the three foregoing equations,
i.e., further differentiation, and (i7) yileds only one root, out of many, for one
given initial guess, when the method converges at all. Moreover, given the local
nature of the method, Newton-Raphson cannot tell whether one has found all
possible roots of the system of equations.
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An alternative, semigraphical approach, was introduced in Example 4.4.3.
This approach consists in reducing the problem to finding the roots of two
nonlinear equations in two unknowns; each equation, then, defines one contour
in the plane of the two unknowns, the intersection points of the two contours
yielding all possible real roots of the system at hand. In order to apply this
approach to the above system, we have to eliminate one of the three unknowns
from the system, the obvious candidate being r. We can do this by dialytic
elimination, as introduced in Subsection 5.4.1. Given the special structure of
the three given equations, it is simpler to eliminate r following a straightforward
approach: First, we solve for 7¢ from the first equation and for 72 from the third,
which yields:

a_E 5 AsE+ Ds
“ 4D " T TA;D+ AD;

Upon equating the above expression of r* with the square of its counterpart
expression for 72, we obtain

r

F (82, 63) = (AE — D)(AD? — A2DE) =0

Further, upon substituting the same expressions for 2 and r* into equation
¢2 = 0, we obtain

G(Oz, 93) = (AE — D)[(AA;;DEQ + AgAgDE - AD2D3) sin92
—2AD(A3E - D3) Cos 92] =0

thereby obtaining a reduced system of two equations in two unknowns only,
8, and 03. The foregoing system admits further simplifications. Indeed, the
common factor AE — D turns out to be positive-definite, i.e., AE — D > 0 for
any values of 62 and 83. While it is not obvious that the factor in question
is positive-definite, its sign-definiteness was verified with the aid of computer
algebra. To visualize this property, we include a three-dimensional rendering
of the function as a surface in Fig. 5.17(a) and a side view of the same in
Fig. 5.17(b). Given that the factor in question is positive-definite, we can safely
divide both sides of the two foregoing equations by this factor, which thus leads
to two nonlinear equations in 82 and 3 defining contours €y and Cs in the 65-03
plane, namely,

C,: AD} - A3DE=0
Cy: (AA3DE2 + Ay AsDE — AD2D3) sin 5 — 2AD(A3E — D3) cosfy =0

The two above contours are plotted in the #5-03 plane in Fig. 5.18.
Apparently, to any optimum posture with joint center O3 above line O;05
corresponds a symmetrically located posture of the robot with O3 below the
above line. This means that all solutions (64, 83) expected should be symmetric
about the origin of the #2-85 plane, which they are, as illustrated in Fig. 5.18(a).
That is, if a pair of numerical values (s, 83) verifies the normality conditions,
then so does the pair (—62, —83). By the same token, if we set §; = 7 in the
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Figure 5.17: A 3D rendering of the function ® = AE — D vs. #5 and 63: (a) an
isometric view; and (b) a view in the 62-® plane

Jacobian expression, a similar set of normality conditions should be obtained,
with the corresoponding symmetry.

In light of the symmetry of the plots of Fig. 5.18(a), we can focus on the first
quadrant of the ,-05 plane, and plot the zoom-in of Fig. 5.18(a), showing only
this quadrant. Moreover, it is apparent that contour C; exhibits two double
points, one at (0.9, 2.9), the other at (2.1, 2.6). Double points are likely to
produce spurious solutions®; hence, we discard those two double points, thereby
leaving only five intersections of interest. As it turns out, the intersection de-
tected by inspection at, roughly, 8> = 1.69 rad, 653 = 2.61 rad produces a maxi-
mum of 1/kpr. These rough values of the design variables were then refined using
the Newton-Raphson method, with the foregoing rough values as initial guess'®.
The Newton-Raphson method, as implemented with Matlab code, yielded the
refined solution displayed below in eight iterations:

02 = 1.68910726900188 rad = 96.77871763°,
0; = 2.61287852677543 rad = 149.7069120°,
r =2.040896177 = L =a/r =0.4899808287 m

9A spurious solution is a set of numerical values of the roots of a system of equations
that, although computed from a sound elimination procedure, does not verify the equations.
Example 9.7.3 includes a case of a double point in a contour that yields spurious solutions.

1014 is well known (Dahlquist and Bjérck, 1974) that, close to a root, the Newton-Raphson
method converges quadratically, i.e., the approximation to the root gains, roughly, two digits
of accuracy at each iteration. Hence, the Newton-Raphson procedure will likely converge to
the root closest to the given estimate.
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Figure 5.18: Contours C; and Cs in the 65-03 plane: (a) in the —7 < 6 < 7,
—7 < 83 < 7 range; (b) a zoom-in in the 0 < 8, < 7, 0 < 03 < 7 range

where we have recalled that a was specified as 1 m. The normalized Jacobian
J at the optimum posture is, moreover,

1 1 1
J=|-0.1552 -0.1552 1.8715
0.9858 —1.0552 —0.8143

with kp = 1.1832. Hence,
KCI = 84.52%

Note that, if we use the 2-norm to define the condition number, i.e., if we
minimize

Ka(r, 02,03) = i

m

then we cannot find expressions for the gradient of 1/x% with respect to the
design variables because the objective function now is not analytic'! in the de-
sign variables. That is, unlike the minimization of kr, now we do not have
normality conditions. Nevertheless, k5 can still be minimized using a direct-
search method, i.e., an optimization method not relying on gradients, but only
on objective-function evaluation. The objective function is that whose min-
imum, or maximum for that matter, is searched. In our case, the objective
function to minimize is k2. Direct-search minimization methods are available in
scientific software. Matlab, for example, uses the Nelder-Mead simplex method,
as implemented in its fminsearch function. A local minimum value of ko was
found by fminsearch with the initial guess

r=10, 6, =6.0°, 63 =18.0°

11 A real-valued function of a real argument is said to be analytic at one value of its argument
if the function admits a series exapnsion at this value.
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Table 5.2: DH Parameters of the Fanuc Arc Mate S series manipulator of 1990

1 | ai (mm) | b; (mm) | a; | 6
1 200 810 90° | 61
2 600 0 0° | 6.
3 130 -30 90° | 63
4 0 550 90° | 64
5 0 100 90° | Os
6 0 100 0° | Be
after 148 iterations, as
ko = 1.9070

This value is attained at the values of the design variables given below:
r=2.1650, 0, =98.9785°, 63 =145.193°
which yield L = 0.4619 m and a nondimensional Jacobian

1 1 1
J=1 —0.1808 —0.1898 1.9488
0.8839 —1.2813 —0.9433

Shown in Fig. 5.19 is the given manipulator at the optimum posture under the
condition number calculated using the Frobenius norm, the posture correspond-
ing to the minimum condition number based on the 2-norm being indistinguish-
able from this one.

Figure 5.19: Optimum configuration for a minimum kg
Example 5.8.2 Find the KCI and the characteristic length of the Fanuc Robot

Arc Mate S series manipulator of 1990, whose DH parameters are given in
Table 5.2.
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Solution: We need the minimum value that the condition number xr of the
normalized robot Jacobian can attain, in order to calculate its KCI as indicated
in eq.(5.87). Now, the Fanuc Robot Arc Mate S series of 1990 is a six-revolute
manipulator for positioning and orienting tasks. Hence, its Jacobian matrix has
to be first recast in nondimensional form, as in eq.(5.109). Next, we find L along
with the joint variables that determine the posture of minimum condition num-
ber via an optimization procedure. Prior to the formulation of the underlying
optimization problem, however, we recall Theorem 5.8.1, under which the first
joint, accounting for motions of the manipulator as a single rigid body, does not
affect its Jacobian condition number. By the same token, we align axes Zg and
Zr. As a consequence, 85 does not affect the Jacobian condition number either.
We thus define the design vector x of the optimization problem at hand as a
5-dimensional array, namely,

x=[0 635 05 65 L]¥
and set up the optimization problem as
min x(J)
X

Now, given the architecture of the robot at hand, a symbolic expression for
J~1, or its dimensionless counterpart j—l, not to speak of kp itself, is elusive,
and hence, an approach like that of Example 5.8.1 appears rather unfeasible.
We thus resort to a direct-search—as opposed to a gradient-based—procedure
to solve the foregoing optimization problem. There are various methods of
this kind at our disposal; the one we chose is, again, the Nelder-Mead simplex
method, as implemented in Matlab within the fminsearch function, which was
provided with the initial guess

Xinip = [26° —56° 195° 107° 341.738]"
The results reported by Matlab are displayed below:
Xopt = [22.60° —51.13° —159.93° 88° 351.23]7
whose last entry, the characteristic length of the robot, is in mm, i.e.,
L = 351.23 mm

Furthermore, the minimum condition number attained at the foregoing posture,
with the characteristic length found above, is

krp = 1.2717

Therefore, the KCI of the Fanuc Robot Arc Mate S series manipulator of 1990
is
KCI = 78.63%

To be sure, the KCI of this manipulator can still be improved dramatically
by noting that the condition number is highly dependent on the location of the
operation point of the end-effector. The robot DH parameters given in Table 5.2
do not account for the geometry of the EE.
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5.9 Exercises

N.B.: Exercises 5.13-5.17 pertain to Section 5.8. They are thus to
be assigned only if this section was covered in class.

5.1 Shown in Fig. 5.20 is a computer-generated model of DIESTRO, the
robot displayed in Fig. 5.15, with a slightly modified EE. The Denavit-
Hartenberg parameters of this robot are given in Table 5.3. Find the
Jacobian matrix of the manipulator at the above configuration.

Figure 5.20: A six-revolute manipulator

Table 5.3: DH parameters of the modified DIESTRO

% | a; (mm) | b; (mm) a; 0;

1 50 50 90° 90°
2 50 50 —-90° | —90°
3 50 50 90° 90°
4 50 50 -90° | —90°
5 50 50 90° 90°
6 0 50 -90° | —90°

5.2 The robotic manipulator of Fig. 4.19 is instrumented with sensors measur-
ing the torque applied by the motors at the joints. Two readouts are taken
of the sensors for the robot in the configuration indicated in the figure. In
the first readout, the gripper is empty; in the second, it holds a tool. If
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the first readout is subtracted from the second, the vector difference ATt
is obtained as
Ar=[0 2 1 0 1 0]7 Nm

With the foregoing information, determine the weight w of the tool and
the distance d of its mass center from C, the center of the spherical wrist.

A planar three-axis manipulator is shown in Fig. 5.21, with a1 = as =
az = 1 m. When a wrench acts onto the EE of this manipulator, the joint
motors exert torques that keep the manipulator under static equilibrium.
Readouts of these joint torques are recorded when the manipulator is in
the posture §; = 8y = 03 = 45°, namely,

le—\/iNm, =—V2Nm, 75=1-+v2Nm

Calculate the above-mentioned wrench.

P(x,y)

Figure 5.21: A planar three-axis manipulator

For the two postures found in Exercise 4.7, the EE is to move with an an-
gular velocity w = w1, wa, ws]” s™. Show that if ||w|| remains constant,
then so does ||8]], for 8 defined as the joint-rate vector of the wrist.

Point C' of the manipulator of Fig. 4.15 is to move with a velocity v in
the posture displayed in that figure. Show that as long as ||v|| remains
constant, so does ||8|], for 8 defined as the joint-rate vector. Moreover,
let us assume that in the same posture, point C is to attain a given accel-
eration a. In general, however, ||6}|, where 8 denotes the corresponding
joint-acceleration vector, does not necessarily remain constant under a
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5.6

5.7

5.8

5.9

constant ||al|. Under which conditions does ||a|| remain constant for a
constant ||8]|?

A load f is applied to the manipulator of Fig. 4.15 in the posture displayed
in that figure. Torque cells at the joints are calibrated to supply torque
readouts resulting from this load only, and not from the dead load—its
own weight—of the manipulator. Show that under a constant-magnitude
load, the magnitude of the joint-torque vector remains constant as well.

Shown in Fig. 4.20 is the kinematic chain of an industrial robot, like the
ABB-IRB 1000, which contains five revolutes and one prismatic pair.

(a) Determine the manipulator Jacobian in the Xi, Yi, Z; coordinate
frame fixed to the base.

(b) Determine the twist of the end-effector, defined in terms of the ve-
locity of point P, for unit values of all joint-rates, and the posture
displayed in the same figure.

(c) Determine the joint accelerations that will produce a vanishing accel-
eration of the point of intersection, C, of the three wrist axes and a
vanishing angular acceleration of the gripper, for the unit joint rates
given above.

The robot in Fig. 4.20 is now used for a deburring task. When the robot is
in the configuration shown in that figure, a static force f and no moment
acts on point P of the deburring tool. This force is sensed by torque sensors
placed at the joints of the robot. Assume that the distance between the
operating point P and the wrist center is 500 mm and that the readings
of the arm joints are 7y, = 0, 72 = 100 Nm, and 73 = 50 Nm.

(a) Find the force f acting at P.

(b) Find the readings of the torque sensors placed at the wrist joints.

A decoupled manipulator is shown in Fig. 10.3 with the DH parameters
of Table 10.1 at arbitrary posture.

{a) Find the Jacobian matrix of this manipulator at a posture with axis
X; vertical and pointing downwards, while Z, and ¥; make an angle
of 180°. Moreover, in this particular posture, Z3 and Z4 are vertical
and pointing upwards, while Z; makes an angle of 180° with Y;.

(b) At the posture described in item (a), compute the joint-rates that
will produce the twist

1

[w]l =11 w, [p]l =
1

e
<
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(¢) A wrench given by a moment n and a force f applied at point P
acts on the EE of the same manipulator at the posture described in
item (a) above. Calculate the joint torques or moments required to
balance this wrench, which is given by

5.10 Dialytic elimination. The characteristic polynomial of decoupled ma-

nipulators for positioning tasks can be derived alternatively via dialytic
elimination, as introduced in Subsection 5.4.1. It is recalled here that
dialytic elimination consists in eliminating one unknown from a system
of polynomial equations by expressing this system in linear homogeneous
form, whereby each equation is a linear combination of various successive
powers of the unknown to be eliminated, including the zeroth power. This
elimination can be achieved as outlined below: In egs.(4.19a) and (4.20a),
express cosf; and sinf; in terms of tan(6, /2) = t;, thereby obtaining

(~A+Cc3+Ds3+E)t34+2Bt1 + (Ces +Ds3+E+ A) =0
(Hez+Isz3+ Nti+2G—-F)t1+(Hez +Isz3+J+F)=0
which can be further expressed as
mt?+2Bt; +n=0
pti4+(2G-F)t1 +q=0
with obvious definitions for coefficients m, n, p, and ¢q. Next, both sides
of the two foregoing equations are multiplied by ¢1, thereby producing
mt3+2Bt2 +nt; =0
pts+ (2G - F)tl+qt; =0
Now, the last four equations can be regarded as a system of linear homo-

geneous equations, namely,
Mtl =0

where 0 is the 4-dimensional zero vector, while M is a 4 x 4 matrix, and
t; is a 4-dimensional vector. These arrays are defined as

0 m 2B n 3
|0 » 26-F 4 _ | &
M= m 2B n 0ol’ t = t
p 2G-F q 0 1

Apparently, t; # 0, and hence, M must be singular. The characteristic
polynomial sought can then be derived from the condition

det(M) =0
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5.11

5.12

5.13

5.14

5.15

Show that the last equation is quadratic in cosf3 and sinf3. Hence, the
foregoing equation should lead to a quartic equation in tan(83/2). Derive
the quartic equation involved. Hint: Do not do this by hand, for it may
be too time-consuming and could quickly lead to algebraic mistakes. Use
software for symbolic computations instead.

Compute the workspace volume of the manipulator of Fig. 4.3. Here, you
can exploit the axial symmetry of the workspace by recalling the Pappus-
Guldinus Theorems—see any book on multivariable calculus—that yield
the volume as 27q, with ¢ defined as the first moment of the cross-section,
which is displayed in Fig. 5.4(b), with respect to the axis of symmetry, Z;.
To this end, you will need the first moment of a semicircle with respect
to its diameter. This information is tabulated in books on elementary
mechanics or multivariable calculus, a.k.a. advanced calculus.

Compute the workspace volume of the manipulator of Fig. 4.15, whose
workspace is sketched in Fig. 5.5. Here, you can also use the Pappus-
Guldinus Theorem, as suggested in Exercise 5.11. However, the first mo-
ment of the cross-section has to be determined numerically, for the area
properties of the curve that generates the 3-dimensional workspace are
not, tabulated. Now, for two manipulators, the Puma-type and the one
under discussion, with the same reach, determine which one has the larger
workspace. Note: This exercise is not more difficult than others, but it
requires the use of suitable software for the calculation of area properties
of planar regions bounded by arbitrary curves. Unless you have access to
such software, do not attempt this exercise.

Show that the maximum manipulability g = 1/det(3JJT) of an orthog-
onal spherical wrist is attained when all three of its axes are mutually
orthogonal. Find that maximum value.

Find an expression for the condition number of a three-revolute spherical
wrist of twist angles a4 and a5, and show that this number depends only on
Qy, ay, and the intermediate joint angle, 5. Moreover, find values of these
variables that minimize the condition number of the manipulator. Hint:
To find the required expression, the use of the condition number based
on the Frobenius norm is strongly recommended. However, rendering the
Jacobian matriz isotropic can be done by inspection.

Manipulability of decoupled manipulators. Let u, and ., represent
the manipulability of the arm and the wrist of a decoupled manipulator,

i.e.,
Mo = wdet(ngng), My = det(JngTQ)

with Ji2 and Jo; defined in Section 5.2. Show that the manipulability u
of the overall manipulator is the product of the two manipulabilities given
above, i.e.,

L= Hollw
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5.16 Consider a planar two-revolute manipulator with link lengths a; and a-.

Find an expression of the form «(r,82) for the condition number of its
Jacobian, with r = as/a;, and establish values of r and 6, that minimize
&, which reaches a minimum value of unity.

5.17 Shown in Fig. 5.12 is an orthogonal three-revolute manipulator with an

isotropic Jacobian. Find the volume of its workspace. Now consider a
second manipulator with a similar orthogonal architecture, but with more
common dimensions, i.e., with links of equal length A. If the two manip-
ulators have the same reach, that is, if

1++2

A= 5

l

find the volume of the workspace of the second manipulator. Finally, deter-
mine the KCI—see Section 5.8 for a definition of this term—of the second
manipulator. Draw some conclusions with regard to the performance of
the two manipulators.



Chapter 6

Trajectory Planning:
Pick-and-Place Operations

6.1 Introduction

The motions undergone by robotic mechanical systems should be, as a rule,
as smooth as possible; i.e., abrupt changes in position, velocity, and acceler-
ation should be avoided. Indeed, abrupt motions require unlimited amounts
of power to be implemented, which the motors cannot supply because of their
physical limitations. On the other hand, abrupt motion changes arise when the
robot collides with an object, a situation that should also be avoided. While
smooth motions can be planned with simple techniques, as described below,
these are no guarantees that no abrupt motion changes will occur. In fact, if
the work environment is cluttered with objects, whether stationary or mobile,
collisions may occur. Under ideal conditions, a flexible manufacturing cell is
a work environment in which all objects, machines and workpieces alike, move
with preprogrammed motions that by their nature, can be predicted at any in-
stant. Actual situations, however, are far from being ideal, and system failures
are unavoidable. Unpredictable situations should thus be accounted for when
designing a robotic system, which can be done by supplying the system with
sensors for the automatic detection of unexpected events or by providing for
human monitoring. Nevertheless, robotic systems find applications not only in
the well-structured environments of flexible manufacturing cells, but also in un-
structured environments such as exploration of unknown terrains and systems
in which humans are present. The planning of robot motions in the latter case
is obviously much more challenging than in the former. Robot motion planning
in unstructured environments calls for techniques beyond the scope of those
studied in this book, involving such areas as pattern recognition and artificial
intelligence. For this reason, we have devoted this book to the planning of robot
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motions in structured environments only.
Two typical tasks call for trajectory planning techniques, namely,

e pick-and-place operations (PPO), and
¢ continuous paths (CP).

We will study PPO in this chapter, with Chapter 11 devoted to CP. More-
over, we will focus on simple robotic manipulators of the serial type, although
these techniques can be directly applied to other, more advanced, robotic me-
chanical systems.

6.2 Background on PPO

In PPO, a robotic manipulator is meant to take a workpiece from a given ini-
tial pose, specified by the position of one of its points and its orientation with
respect to a certain coordinate frame, to a final pose, specified likewise. How-
ever, how the object moves from its initial to its final pose is immaterial, as
long as the motion is smooth and no collisions occur. Pick-and-place operations
are executed in elementary manufacturing operations such as loading and un-
loading of belt conveyors, tool changes in machine tools, and simple assembly
operations such as putting roller bearings on a shaft. The common denomina-
tor of these tasks is material handling, which usually requires the presence of
conventional machines whose motion is very simple and is usually characterized
by a uniform velocity. In some instances, such as in packing operations, a set
of workpieces, e.g., in a magazine, is to be relocated in a prescribed pattern
in a container, which constitutes an operation known as palletizing. Although
palletizing is a more elaborate operation than simple pick-and-place, it can be
readily decomposed into a sequence of the latter operations.

It should be noted that although the initial and the final poses in a PPO
are prescribed in the Cartesian space, robot motions are implemented in the
joint space. Hence, the planning of PPO will be conducted in the latter space,
which brings about the need of mapping the motion thus planned into the
Cartesian space, in order to ensure that the robot will not collide with other
objects in its surroundings. The latter task is far from being that simple, since
it involves the rendering of the motion of all the moving links of the robot,
each of which has a particular geometry. An approach to path planning first
proposed by Lozano-Pérez (1981) consists of mapping the obstacles in the joint
space, thus producing obstacles in the joint space in the form of regions that
the joint-space trajectory should avoid. The idea can be readily implemented
for simple planar motions and simple geometries of the obstacles. However, for
general 3-D motions and arbitrary geometries, the computational requirements
make the procedure impractical. A more pragmatic approach would consist
of two steps, namely, (i) planning a preliminary trajectory in the joint space,
disregarding the obstacles, and (i¢) visually verifying if collisions occur with
the aid of a graphics system rendering the animation of the robot motion in the
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presence of obstacles. The availability of powerful graphics hardware enables the
fast animation of robot motions within a highly realistic environment. Shown in
Fig. 6.1 is a still image of the animation produced by RVS, the McGill University
Robot-Visualization System, of the motion of a robot performing a palletizing
operation. Commercial software for robot-motion rendering is available.

Figure 6.1: Still image of the animation of a palletizing operation

By inspection of the kinematic closure equations of robotic manipulators—
see eqs.(4.5a & b)—it is apparent that in the absence of singularities, the map-
ping of joint to Cartesian variables, and vice versa, is continuous. Hence, a
smooth trajectory planned in the joint space is guaranteed to be smooth in the
Cartesian space, and the other way around, as long as the trajectory does not
encounter a singularity.

In order to proceed to synthesize the joint trajectory, we must then start by
mapping the initial and final poses of the workpiece, which is assumed to be
rigidly attached to the EE of the manipulator, into manipulator configurations
described in the joint space. This is readily done with the methods described
in Chapter 4. Let the vector of joint variables at the initial and final robot
configurations be denoted by 8; and @p, respectively. Moreover, the initial
pose in the Cartesian space is defined by the position vector p; of the operation
point P of the EE and a rotation matrix Q. Likewise, the final pose in the
Cartesian space is defined by the position vector pr of P and the rotation matrix
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Qpr. Moreover, let pr and Py denote the velocity and acceleration of P, while wy
and wr denote the angular velocity and angular acceleration of the workpiece,
all of these at the initial pose. These variables at the final pose are denoted
likewise, with the subscript I changed to F. Furthermore, we assume that time
is counted from the initial pose, i.e., at this pose, ¢ = 0. If the operation takes
place in time T', then at the final pose, ¢ = T'. We have thus the set of conditions
that define a smooth motion between the initial and the final poses, namely,

p(0) = pr p(0) =0 P0) =0 (6.1a)
Q0) =Q: w(©) =0 @(0) =0 (6.1b)
pP(T) =pr p(T)=0 p(T)=0 (6.1c)
Q(T)=Qr Ww(T)=0 w(T) =0 (6.1d)

In the absence of singularities, then, the conditions of zero velocity and accel-
eration imply zero joint velocity and acceleration, and hence,

6(0) = 6; 6(0)=0 6(0)=0 (6.22)
o(T) = 0p O(T)=0 6(T)=0

6.3 Polynomial Interpolation

A simple inspection of conditions (6.2a) and (6.2b) reveals that a linear interpo-
lation between initial and final configurations will not work here, and neither will
a quadratic interpolation, for its slope vanishes only at a single point. Hence,
a higher-order interpolation is needed. On the other hand, these conditions
imply, in turn, six conditions for every joint trajectory, which means that if a
polynomial is to be employed to represent the motion of every joint, then this
polynomial should be at least of the fifth degree. We thus start by studying
trajectory planning with the aid of a 5th-degree polynomial.

6.3.1 A 3-4-5 Interpolating Polynomial

In order to represent each joint motion, we use here a fifth-order polynomial
s(7), namely,

s(r)=ar® + bt +er® +dr? +er+ f (6.3)
such that
0<s<1, 0<r<l (6.4)
and

(6.5)
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We will thus aim at a normal polynomial that, upon scaling both its argument
and the polynomial itself, will allow us to represent each of the joint variables
8, throughout its range of motion, so that

0;(t) = 65 + (Gf - HJI-)S(T) (6.6a)

where 87 and Of are the given initial and final values of the jth joint variable.
In vector form, eq.(6.6a) becomes

6(t) =05+ (8r — O1)s(7) (6.6b)
and hence,
0(t) = (0 — 0;)s' (1)7(t) = (O — 91)51;3’(7-) (6.6¢)
Likewise,
B(t) = %(eF —00)s"(7) (6.64)
and _ 1
0(t) = 173(017 —05)s" (1) (6.6¢)

What we now need are the values of the coefficients of s(r) that appear in
€q.(6.3). These are readily found by recalling conditions (6.2a & b), upon con-
sideration of eqs.(6.6b—d). We thus obtain the end conditions for (1), namely,

5(0)=0, §(0)=0, §'0)=0, s(1)=1, §(1)=0, §"(1)=0 (6.7)
The derivatives of s(7) appearing above are readily derived from eq.(6.3), i.e.,
§'(1) = bar® +4br® + 3cr® + 2d7 + e (6.8)
and
§"(1) = 20at® 4 12b72 + 6¢7 + 2d (6.9)
Thus, the first three conditions of eq.(6.7) lead to
f=e=d=0 (6.10)

while the last three conditions yield three linear equations in a, b, and ¢, namely,

a+b+c=1 (6.11a)
S5a+4b+3¢c=0 (6.11Db)
20a+12b+6¢c=0 (6.11c)

Upon solving the three foregoing equations for the three aforementioned un-
knowns, we obtain

a=6, b=-15 =10 (6.12)
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and hence, the normal polynomial sought is

s(r) = 67° — 157% + 107° (6.13)
which is called a 3-4-5 polynomial.

This polynomial and its first three derivatives, all normalized to fall within
the (—1,1) range, are shown in Fig. 6.2. Note that the smoothness conditions
imposed at the outset are respected and that the curve thus obtained is a mono-
tonically growing function of 7, a rather convenient property for the problem at
hand.

s'/smax - \

~0.8

S“/S

S”I /SIII

"
max

max

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.2: 3-4-5 interpolation polynomial and its derivatives

It is thus possible to determine the evolution of each joint variable if we
know both its end values and the time 7" required to complete the motion. If no
extra conditions are imposed, we then have the freedom to perform the desired
motion in as short a time T as possible. Note, however, that this time cannot
be given an arbitrarily small value, for we must respect the motor specifications
on maximum velocity and maximum torque, the latter being the subject of
Chapter 7. In order to ease the discussion, we limit ourselves to specifications
of maximum joint velocity and acceleration rather than maximum torque. From
the form of function 6;(t) of eq.(6.6a), it is apparent that this function takes on
extreme values at points corresponding to those at which the normal polynomial
attains its extrema. In order to find the values of 7 at which the first and second
derivatives of s(7) attain maximum values, we need to zero its second and third



6.3 Polynomial Interpolation 239

derivatives. These derivatives are displayed below:

s'(1) = 307* — 607° + 3072 (6.14a)
§" (1) = 1207% — 18072 + 607 (6.14b)
" (1) = 36072 — 3607 + 60 (6.14c)

from which it is apparent that the second derivative vanishes at the two ends
of the interval 0 < 7 < 1. Additionally, the same derivative vanishes at the
midpoint of the same interval, i.e., at 7 = 1/2. Hence, the maximum value of

8'(1), 8hax, 18 readily found as

1 15
/ Y = —
Stnax = S (2) 3 (6.15)

and hence, the maximum value of the jth joint rate takes on the value

. 15(6F — 61)
(ej)max = ]ST .

which becomes negative, and hence, a local minimum, if the difference in the
numerator is negative. The values of 7 at which the second derivative attains
its extreme values are likewise determined. The third derivative vanishes at two
intermediate points 7 and 72 of the interval 0 < 7 < 1, namely, at

1 V3

=_-+ — 1
71,2 2 6 (6 7)

and hence, the maximum value of s”(7) is readily found as

(6.16)

1 V3 10v/3
" —_ M —
max $ (2 6 > 3 (618)
while the minimum is given as
no g1 Y3) _ _10v3 (6.19)
2 6 3

Therefore, the maximum value of the joint acceleration is as shown below:
10v/3 (6] - 6))

(05)max = —3 2 (6.20)
Likewise,
e = 8(0) = 8"(1) = 60
and hence,
- I~ 6!
(oj)max =60 JT3 J (6.21)

Thus, egs.(6.16) and (6.20) allow us to determine T for each joint so that the
joint rates and accelerations lie within the allowed limits. Obviously, since the
motors of different joints are different, the minimum values of T' allowed by the
joints will be, in general, different. Of those various values of T, we will, of
course, choose the largest one.
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6.3.2 A 4-5-6-7 Interpolating Polynomial

Now, from eq.(6.14c), it is apparent that the third derivative of the normal
polynomial does not vanish at the end points of the interval of interest. This
implies that the third time derivative of 8;(t), also known as the joint jerk,
does not vanish at those ends either. It is desirable to have this derivative as
smooth as the first two, but this requires us to increase the order of the normal
polynomial. In order to attain the desired smoothness, we will then impose two
more conditions, namely,

s"0)=0, §"(1)=0 (6.22)

We now have eight conditions on the normal polynomial, which means that
the polynomial degree should be increased to seven, namely,

s(r) =ar" +br +cer® +dr' +er® + fr2+ g7+ h (6.23a)
whose derivatives are readily determined as shown below:

§'(1) = Tar® + 6b7° + 5er® +4dr® + 3er’ + 2f7 + ¢ (6.23b)
s"(1) = 42a7® 4 30b7* 4 20¢7® + 12d72 + 6er + 2f (6.23¢)
s"(7) = 210a7* + 120672 + 60cr? + 24dr + 6e (6.23d)

The first three conditions of eq.(6.7) and the first condition of eq.(6.22) readily
lead to

e=f=g=h=0 (6.24)

Furthermore, the last three conditions of eq.(6.7) and the second condition of
€q.(6.22) lead to four linear equations in four unknowns, namely,

at+b+ct+d=1 (6.25a)
Ta+6b+5¢c+4d =0 (6.25Db)

420 + 300+ 20c + 12d =0 (6.25¢)
210a + 1205 + 60c + 24d = 0 (6.25d)

and hence, we obtain the solution

a = -20, b="70, c=—84, d=235 (6.26)
the desired polynomial thus being
s(1) = =207 + 707% — 8475 + 357* (6.27)

which is a 4-5-6-7 polynomial. This polynomial and its first three derivatives,
normalized to fall within the range (—1,1), are plotted in Fig. 6.3. Note that the
4-5-6-7 polynomial is similar to that of Fig. 6.2, except that the third derivative
of the former vanishes at the extremes of the interval of interest. As we will



6.3 Polynomial Interpolation 241

! } s /
-04F 8 /sy - Y ; 1
v /
— - n 1 7 2 . g . B
06 5 /Smax L ,'/
. \ .
g S /
[ m meo R . .
-0.8f s /smax N /.’
> - N S
-1 L ) L I el i T | 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
T

Figure 6.3: 4-5-6-7 interpolating polynomial and its derivatives

presently show, this smoothness has been obtained at the expense of higher
maximum values of the first and second derivatives.

We now determine the maximum values of the velocity and acceleration pro-
duced with this motion. To this end, we display below the first three derivatives,
namely,

s'(r) = ~1407° ++ 4207° — 4207* + 1407 (6.28a)
s (1) = —8407° + 21007 — 16807° + 42072 (6.28b)
5" (1) = —42007* + 84007° — 504072 + 8407 (6-28¢)

The first derivative attains its extreme values at points where the second deriva-
tive vanishes. Upon zeroing the latter, we obtain
2(=27% 4+ 572 —47+1) =0 (6.29)

which clearly contains a double root at 7 = 0. Moreover, the cubic polynomial
in the parentheses above admits one real root, namely, 7 = 1/2, which yields
the maximum value of §'(7), i.e.,

1 35
! = g — = — .
Smax =8 <2) 16 (6 30)

whence the maximum value of the jth joint rate is found as
35(0F — 6)

(6.31)
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Likewise, the points of maximum joint acceleration are found upon zeroing
the third derivative of s(7), namely,

§"'(7) = —42007* + 84007° — 504072 + 8407 = 0 (6.32)
or
=152 =57 +1)=0 (6.33)

which yields, in addition to the two end points, two intermediate extreme points,
namely,

1,5
=—=% — 6.34

T =55 (6.34)

and hence, the maximum value of acceleration is found to be

84v/5
Smax = 8" (T1) = 84V5 (6.35)
25

the minimum occurring at 7 = 72, with si, = —sl .. The maximum value of

the jth joint acceleration is thus

(6 ) max = (6.36)

84+/5 (8] — 6]
25 T?

which becomes a minimum if the difference in the numerator is negative. Like-
wise, the zeroing of the fourth derivative leads to

—207 +3072 - 127+ 1=0

whose three roots are

_1-v3/5 1 _1++/3/5
Tl - 2 ? T2 - 2, T] - ———2
and hence,
gn g (LEVSISY 4o g g5y - 108
2 2
ie.,
105
max{[s" (7)[} = == = s (6.37)

As in the case of the fifth-order polynomial, it is possible to use the forego-
ing relations to determine the minimum time T during which it is possible to
perform a given PPO while observing the physical limitations of the motors.
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Figure 6.4: The normal cycloidal motion and its time derivatives

6.4 Cycloidal Motion

An alternative motion that produces zero velocity and acceleration at the ends
of a finite interval is the eycloidal motion. In normal form, this motion is given
by

1
s(ry=71-— o sin 2w (6.38a)
its derivatives being readily derived as
§' (1) =1—cos2nT (6.38b)
§"(r) = 2wsin 277 (6.38¢)
s" (1) = 4n* cos 2mwr (6.38d)

The cycloidal motion and its first three time-derivatives, normalized to fall
within the range (—1,1), are shown in Fig. 6.4. Note that while this motion,
indeed, has zero velocity and acceleration at the ends of the interval 0 < 7 < 1,
its jerk is nonzero at these points and hence, exhibits jump discontinuities at
the ends of that interval.

When implementing the cycloidal motion in PPO, we have, for the jth joint,

0;(t) =6 + (67 —61)s(7) (6.39a)

. 6r — 61

0;(t) = L—-214'(7) (6.39b)
T

. oF — o1

6;(t) = L—="2Ls"(7) (6.39¢)

T2
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Moreover, as the reader can readily verify, under the assumption that GjF > 0; ,
this motion attains its maximum velocity at the center of the interval, i.e., at
7 = 0.5, the maximum being

Smax = §(0.5) =2

and hence,

(éj)max = %(ef - 95) (6403,)

Likewise, the jth joint acceleration attains its maximum and minimum values
at 7 = 0.25 and 7 = 0.75, respectively, i.e.,

Smax = " (0.25) = 8"(0.75) = 27 (6.40b)
and hence,
e 271- Fa 7 . 2,n. F I
(0;)mex = 5:2‘(0,' =0;), (0j)min = —TE(Oj —-6;) (6.40c)

Moreover, s'(7) attains its extrema at the ends of the interval, i.e.,
st =38"(0) = s"(1) = 4r? (6.41)
and hence,
(61)max = LITL:(O}““ — 6% (6.42)

Thus, if motion is constrained by the maximum speed delivered by the mo-
tors, the minimum time T for the jth joint to produce the given PPO can be
readily determined from eq.(6.40a) as

o _ 205 —6])

i (Oj - (6.43)

and hence, the minimum time in which the operation can take place can be

readily found as
9f . 9!
Tnin = 2max { —+—7 (6.44)
J (05 )max

If joint-acceleration constraints are imposed, then a similar procedure can be
followed to find the minimum time in which the operation can be realized.
As a matter of fact, rather than maximum joint accelerations, maximum joint
torques are to be respected. How to determine these torques is studied in detail
in Chapter 7.
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6.5 Trajectories with Via Poses

The polynomial trajectories discussed above do not allow the specification of
intermediate Cartesian poses of the EE. All they guarantee is that the Carte-
sian trajectories prescribed at the initial and final instants are met. One way of
verifying the feasibility of the Cartesian trajectories thus synthesized was out-
lined above and consists of using a graphics system, preferably with animation
capabilities, to produce an animated rendering of the robot motion, thereby
allowing for verification of collisions. If the latter occur, we can either try alter-
native branches of the inverse kinematics solutions computed at the end poses
or modify the trajectory so as to eliminate collisions. We discuss below the
second approach. This is done with what are called via poses, i.e., poses of the
EE in the Cartesian space that lie between the initial and the final poses, and
are determined so as to avoid collisions. For example, if upon approaching the
final pose of the PPQ, the manipulator is detected to interfere with the surface
on which the workpiece is to be placed, a via pose is selected close to the final
point so that at this pose, the workpiece is far enough from the surface. From
inverse kinematics, values of the joint variables can be determined that corre-
spond to the aforementioned via poses. These values can now be regarded as
points on the joint-space trajectory and are hence called via points. Qbviously,
upon plotting each joint variable vs. time, via points appear as points on those
plots as well.

The introduction of via points in the joint-space trajectories amounts to an
increase in the number of conditions to be satisfied by the desired trajectory.
For example, in the case of the polynomial trajectory synthesized for continuity
up to second derivatives, we can introduce two via points by requiring that

s(m1) = s1, 8(12) = 82 (6.45)

where 71, T2, 81, and s2 depend on the via poses prescribed and the instants
at which these poses are desired to occur. Hence, s; and sq differ from joint
to joint, although the occurrence instants 7 and 75 are the same for all joints.
Thus, we will have to determine one normal polynomial for each joint. Further-
more, the ordinate values 87 and so of the normal polynomial at via points are
determined from the corresponding values of the joint variable determined, in
turn, from given via poses through inverse kinematics. Once the via values of
the joint variables are known, the ordinate values of the via points of the nor-
mal polynomial are found from eq.(6.6a). Since we have now eight conditions to
satisfy, namely, the six conditions (6.7) plus the two conditions (6.45), we need
a seventh-order polynomial, i.e.,

s(ry=ar" +br® +erP +drt+er® + frP+gr+h (6.46)

Again, the first three conditions of eq.(6.7) lead to the vanishing of the last
three coefficients, i.e.,

f=g=h=0 (6.47)
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Further, the five remaining conditions are now introduced, which leads to a
system of five linear equations in five unknowns, namely,

a+b+ct+d+e=1 (6.48a)
Ta+6b+5c+4d+3e=0 (6.48b)

42a + 300+ 20c + 12d + 6e =0 (6.48c¢)
a+ 78+ ric+ rid + He = 5 (6.484)
Tda+18b+ 15+ Tad + The = 8o (6.48¢)

where 11, 72, 81, and 85 are all data. For example, if the via poses occur at 10%
and 90% of T', we have

n =1/10, 72 =9/10 (6.48f)

the polynomial coefficients being found as

a = 100(12286 + 12500s; — 12500s2)/729 (6.49a)
b = 100(—38001 — 48750s; + 38750s2) /729 (6.49b)
¢ = (1344358 + 237500051 — 1375000s2) /243 (6.49¢)
d = (—1582435 — 46250005, + 1625000s2) /729 (6.49d)
e = 10(12159 + 11250051 — 12500s5) /729 (6.49€)

The shape of each joint trajectory thus depends on the values of s; and s2 found
from eq.(6.6a) for that trajectory.

6.6 Synthesis of PPO Using Cubic Splines

When the number of via poses increases, the foregoing approach may become
impractical, or even unreliable. Indeed, forcing a trajectory to pass through a
number of via points and meet endpoint conditions is equivalent to interpola-
tion. We have seen that an increase in the number of conditions to be met by
the normal polynomial amounts to an increase in the degree of this polynomial.
Now, finding the coeflicients of the interpolating polynomial requires solving a
system of linear equations. As we saw in Section 5.8, the computed solution,
when solving a system of linear equations, is corrupted with a relative roundoff
error that is roughly equal to the relative roundoff error of the data multiplied
by an amplification factor that is known as the condition number of the system
matrix. As we increase the order of the interpolating polynomial, the associated
condition number rapidly increases, a fact that numerical analysts discovered
some time ago (Kahaner et al., 1989). In order to cope with this problem, or-
thogonal polynomials, such as those bearing the names of Chebyshev, Laguerre,
Legendre, and so on, have been proposed. While orthogonal polynomials allevi-
ate the problem of a large condition number, they do this only up to a certain
extent. As an alternative to higher-order polynomials, spline functions have
been found to offer more robust interpolation schemes (Dierckx, 1993). Spline
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functions, or splines, for brevity, are piecewise polynomials with continuity prop-
erties imposed at the supporting points. The latter are those points at which
two neighboring polynomials join.

The attractive feature of splines is that they are defined as a set of rather
lower-degree polynomials joined at a number of supporting points. Moreover,
the matrices that arise from an interpolation problem associated with a spline
function are such that their condition number is only slightly dependent on
the number of supporting points, and hence, splines offer the possibility of
interpolating over a virtually unlimited number of points without producing
serious numerical conditioning problems.

Below we expand on periodic cubic splines, for these will be shown to be
specially suited for path planning in robotics.

A cubic spline function s(z) connecting N points P, (zz, &), for k =
1,2,...,N, is a function defined piecewise by N — 1 cubic polynomials joined
at the points Py, such that s(zs) = yi. Furthermore, the spline function thus
defined is twice differentiable everywhere in 2; < 2 < zxn. Hence, cubic splines
are said to be C? functions, i.e., to have continuous derivatives up to the second
order.

Cubic splines are optimal in the sense that they minimize a functional, i.e.,
an integral defined as

T
F=/ §"%(z) dz
0

subject to the constraints
s(a:k)=yk, k=1,...,N

where z; and y; are given. The aforementioned optimality property has a
simple kinematic interpretation: Among all functions defining a motion so that
the plot of this function passes through a set of points P;(z1, 81), P2(z2, s2),
..., Pn(zn, sn) in the z-s plane, the cubic spline is the one containing the
minimum acceleration magnitude. In fact, F', as given above, is the square of
the Fuclidean norm (Halmos, 1974) of s”(z), i.e., F' turns out to be a measure
of the magnitude of the acceleration of a displacement program given by s(z),
if we interpret s as displacement and z as time.

Let Py(zx, yr) and Pyy1(Zr+1, Yrr1) be two consecutive supporting points.
The kth cubic polynomial s;(x) between those points is assumed to be given by

sip(x) = A (z — .’l?k)s + By (z — Il,'k)z + Cy (.’L‘ —2) + Dy (6.508,)

for 23, < 2 < zg41. Thus, for the spline s(z), 4(N — 1) coefficients Ay, By,
Ck, Dy, for k=1,...,N — 1, are to be determined. These coefficients will be
computed presently in terms of the given function values {s;} and the second
derivatives of the spline at the supporting points, {s}(zx)}{’, as explained below:

We will need the first and second derivatives of s;(x) as given above, namely,

sk (z) = 3Ax(z — z1)% + 2By (z — 1) + C (6.50b)
sp(z) = 6Ak(z — xx) + 2B (6.50c)
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whence the relations below follow immediately:

B; = —;-sjc’ (6.51a)
Ck = 8} (6.51b)
Dy, = s, 6.51c)
where we have used the abbreviations
sk =58(2k), s =8'(2), g =" (zn) (6.52)
Furthermore, let
A:ck = T4+l — Tk (6.53)

From the above relations, we have expressions for coefficients By and Dy in
terms of s} and s, respectively, but the expression for C} is given in terms
of sj. What we would like to have are similar expressions for A; and Cy, i.e.,
in terms of s; and s}. The relations sought will be found by imposing the
continuity conditions on the spline function and its first and second derivatives
with respect to x at the supporting points. These conditions are, then, for
k=1,2,...,N—1,

sk(mk+1) = Sk41 (6.54&)
81 (Tht1) = Sjp1 (6.54b)
8h(Th+1) = Syt (6.54c)

Upon substituting s} (zx+1), as given by eq.(6.50c), into eq.(6.54c), we obtain
6AkAIlIk + 2Bk = 2Bk+1

but from eq.(6.51a), we have already an expression for By, and hence, one for
Br41 as well. Substituting these two expressions in the above equation, we
obtain an expression for A, namely,

1
Ay = v (Sk1 — Sk) (6.54d)

Furthermore, if we substitute si(zx41), as given by eq.(6.50a), into eq.(6.54a),
we obtain

Ar(Azp)® + By (Azy)? + ChAzy + Dy = Sp41

But we already have values for A, By and Dy from egs.(6.54d), (6.51a), and
(6.51c), respectively. Upon substituting these values in the foregoing equa-
tion, we obtain the desired expression for Cj in terms of function and second-
derivative values, i.e.,

Asy,

Cr = Azxy

1
-3 Az, (skyr + 2s%) (6.54e)
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In summary, then, we now have expressions for all four coefficients of the kth
polynomial in terms of function and second-derivative values at the supporting
points, namely,

1
Ay = 6 Azy (5');+1 — 5) (6.55a)
By = %s',é (6.55b)

Ask 1
Cr = A_:L'k — —6 Axy (5Z+1 + 28%) (655C)
Dy = s, (6.55d)
with
Ask = Sg+1 — Sk (6556)

Therefore, in order to find the above coefficients, all we need is the set of val-
ues of the second derivatives {s} I at the supporting points. To compute these
values, we impose the continuity condition on the first derivative, eq.(6.54b),
after substitution of eq.(6.50b), which yields

3Ak(A.’L‘k)2 + 2By Azy + Cr = Ciy1
or, if we shift to the previous polynomial,
3Ak-1(Az-1)? + 2By—1Az_1 + Cx_1 = C},

Now, if we substitute expressions (6.55a—c) in the above equation, a linear sys-
tem of N — 2 simultaneous equations for the N unknowns {s{}{’ is obtained,
namely,

(Amk)sjc'+1 + 2(A:L'k_1 -+ Amk)sz + (Amk_l)s',;_l

-6 Ask _ ASk_l
- A.’I:k A.’I}k_l

Further, let s be the N-dimensional vector whose kth component is sj, with
vector s” being defined likewise, i.e.,

), for k=2,...,N—1. (6.56)

I 1" (6.57)
The relationship between s and s” of eq.(6.56) can then be written in vector

form as

"no__r.n 7]
S=[81,"',3N 3 s _[Sla"'asN

As"=6Cs (6.58a)
where A and C are (N — 2) x N matrices defined as:
ar 20,0 @ 0 e 0 0
0 as 203 o3 e 0 0
A=|: : : : (6.58b)
0 0 ce.anm 2anm Ny an 0

0 0 0 QN1 20[1\{11,1\7/ QN
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and
b =Pz B 0 0 0
0 B2 —P23 Ps 0 0
C=1: : : (6.58¢)
0 0 e IBNIII _ﬂN”',N” IBNH 0
0 0 0 R /BN” —IBNII,NI ﬂNl
while for ¢, j,k=1,...,N -1,
ay = Az, Qi = a; + oy, (6.58(1)
Br =1/, PBij=Bi+B; (6.58¢)
and
N'=N-1, N'=N-2, N"=N -3 (6.58f)

Thus, two additional equations are needed to render eq.(6.58a) a determined
system. The additional equations are derived, in turn, depending upon the
class of functions one is dealing with, which thus gives rise to various types of
splines. For example, if s{ and s%; are defined as zero, then one obtains natural
cubic splines, the name arising by an analogy with beam analysis. Indeed, in
beam theory, the boundary conditions of a simply-supported beam establish the
vanishing of the bending moments at the ends. From beam theory, moreover,
the bending moment is proportional to the second derivative of the elastica, or
neutral azis, of the beam with respect to the abscissa along the beam axis in the
undeformed configuration. In this case, vector s"” becomes of dimension N — 2,
and hence, matrix A becomes, correspondingly, of (N — 2) x (N — 2), namely,

2012 @2 0 e 0
oz 2023 a3 e 0
A=| : (6.59)
0 N QN 2aNm,Nn Q!
0 O e QN 2aNII,NI

On the other hand, if one is interested in periodic functions, which is often
the case when synthesizing pick-and-place motions, then the conditions s; = sy,
sy = sy, s = s are imposed, thereby producing periodic cubic splines. The
last of these conditions is used to eliminate one unknown in eq.(6.58a), while
the second condition, namely the continuity of the first derivative, is used to
add an equation. We have, then,

s = sy (6.60)
which can be written, using eq.(6.54b), as

sy = sy_1(zN) (6.61)
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Upon substituting s _,(z~), as given by eq.(6.50b), into the above equation,
we obtain
8/1 = 3AN_1A.’I)?V_1 +2Bny_1Azn_1 +Cn-1 (6.62)

Now we use egs.(6.55a—c) and simplify the expression thus resulting, which leads
to

A31 ASN_.l
2(A.’I)1 + A(I}N_l)slll + Axlsé' + A:L‘N_ls}'v_l = <_A—.’I:—1 - A-’l?N_l) (6.63)

thereby obtaining the last equation required to solve the system of equations
given by eqs.(6.58a—¢c). We thus have (N — 1) independent equations to solve
for (N — 1) unknowns, namely, s}, for k =1,...,N — 1, s’ being equal to s/.
Expressions for matrices A and C, as applicable to periodic cubic splines, are
given in eqgs.(11.59a & b).

While we focused in the above discussion on cubic splines, other types of
splines could have been used. For example, Thompson and Patel (1987) used
B-splines in robotics trajectory planning.

Example 6.6.1 (Approximation of a 4-5-6-7 polynomial with a cubic
spline) Find the cubic spline that interpolates the 4-5-6-7 polynomial of Fig. 6.3
with N + 1 equally-spaced supporting points and plot the interpolation error for
N =3 and N =10.

Solution: Let us use a natural spline, in which case the second derivative at
the end points vanishes, with vector s” thus losing two components. That is,
we now have only N — 1 unknowns {s{}Y to determine. Correspondingly,
matrix A then loses its first and last columns and hence, becomes a square
(N —1) x (N — 1) matrix. Moreover,

= — =1,...,N
A.’L‘k N) k ) 3
and matrices A and C become, correspondingly,
4 1 0 --- 0
1 4 1 ... 0
A—l . . .
=¥ .
o ... 1 4 1
0o 0 --- 1 4
and
1 -2 1 0 0 O
0o 1 -2 1 0 0
C=N|[: 1 "o 0 00
o o0 .- 1 -2 1 0
o 0 o -~ 1 =21

the vector of second derivatives at the supporting points, s”, then being readily
obtained as
s" =6A"!Cs
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Figure 6.5: Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using four supporting points

With the values of the second derivatives at the supporting points known, the
calculation of the spline coefficients Ay, By, Ci, and Dy, for k =1,..., N, is now
straightforward. Let the interpolation error, e(z), be defined as e(z) = s(z) —
p(z), where s(z) is the interpolating spline and p(z) is the given polynomial.
This error and its derivatives e'(z), €¢”(z), and e''(z) are plotted in Figs. 6.5
and 6.6 for N = 3 and N = 10, respectively. What we observe is an increase of
more than one order of magnitude in the error as we increase the order of the
derivative by one. Thus, the order of magnitude of acceleration errors is usually
higher than two orders of magnitude above the displacement errors, a fact that
should not be overlooked in applications.

6.7 Exercises

6.1 A common joint-rate program for pick-and-place operations is the trape-
zoidal profile of Fig. 6.7, whereby we plot s'(7) vs. 7, using the notation
introduced in Chapter 7, i.e., with s(7) and 7 defined as dimensionless
variables. Here, s'(7) starts and ends at 0. From its start to a value
71, 8'(7) grows linearly, until reaching a maximum s, ,; then, this func-
tion remains constant until a value 74 is reached, after which the function

decreases linearly to zero at the end of the interval.

Clearly, this profile has a discontinuous acceleration and hence, is bound
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Figure 6.6: Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using eleven supporting points

to produce shock and vibration. However, the profile can be smoothed
with a spline interpolation as indicated below.

(a) Find the value of sl,,, in terms of 7 and 7, so that s(0) = 0 and
s(1) =1.

(b) Plot s(t) with the value of s/ ., found above and decompose it into

a linear part s;(7) and a periodic part s,(7).

(c) Sample s(7) with N equally spaced points and find the periodic spline
that interpolates s,(7), for 1 = 0.2 and 7» = 0.9. Try various
values of N and choose the one that (a) is the smallest possible, (b)
gives a “good” approximation of the original s(7), and (c) yields the
best-behaved acceleration program, i.e., an acceleration profile that
is smooth and within reasonable bounds. Discuss how you would go
about defining a reasonable bound.

6.2 An alternative approach to the solution of the foregoing smoothing prob-
lem consists in solving an inverse interpolation problem: Plot the accel-
eration program of the foregoing joint-rate plot, s"(7). Now, sample a set
of N equally spaced points of s (7) and store them in an N-dimensional
array s”. Next, find the ordinates of the supporting points of the interpo-
lating periodic spline and store them in an array s of suitable dimension.
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Smax

=Y

T1 To 1

Figure 6.7: A trapezoidal joint-rate profile

Note that s” does not contain information on the linear part of s(7). You
will have to modify suitably your array s so that it will produce the cor-
rect abscissa values of the interpolated curve s(r), with s(0) = 0 and
s(1) = 1. Moreover, s(7) must be monotonic. Try various values of N and
choose the smallest one that gives a well-behaved acceleration program,
as described in Exercise 6.1.

One more approach to smoothing the joint-rate profile of Fig. 6.7 is to
use cycloidal motions. To this end, define a segment of a cycloidal-motion
function between 7 = 0 and 7 = 7, so that §/(71) = 8l for s, as
indicated in the same figure. Further, define a similar segment between
7 =1 and 7 = 1 so that §'(12) = sl,.x and §'(1) = 0. Then, join the
two segments with a line of slope s,,,.. Plot the displacement, velocity,
and acceleration of the smoothed motion. Note that the smoothed profile
must meet the end conditions s(0) = 0 and s(1) = 1, and that you may
have to introduce a change of variable to shrink the corresponding s'(7)

segment to meet these conditions.

A pick-and-place operation involves picking objects from a magazine sup-
plied with an indexing mechanism that presents the objects with a known
pose and zero twist, at equal time-intervals T, to a robot, which is to
place the objects on a belt conveyor running at a constant speed vg. Find
5th- and 7th-degree polynomials that can be suitably used to produce the
necessary joint-variable time-histories.

Repeat Exercise 6.4, but now the objects are to be picked up by the robot
from a belt conveyor traveling at a constant velocity vy and placed on a
second belt conveyor traveling at a constant velocity vo. Moreover, let pg
and p2 designate the position vectors of the points at the pick- and the
place poses, respectively. Furthermore, the belts lie in horizontal, parallel
planes. Finally, the objects must observe the same attitude with respect
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6.6

6.7

6.8
6.9

6.10

6.11

to the belt orientation in both the pick- and the place poses.

Approximate the cycloidal function of Subsection 6.4 using a periodic
cubic spline with N subintervals of the same lengths, for various values of
N between 5 and 100. Tabulate the approximation error ey vs. N, with
en defined as

eN = mzax{ei}{v

and
€ = IIl&]C'S(I) C(I)', T S 7 S Tit+1
T

in which s(r) denotes the spline approximation and ¢(7) the cycloidal
function. Note: the cycloidal function can be decomposed into a linear
and a periodic part.

From inspection of the plot of the 3-4-5 polynomial and its derivatives
displayed in Fig. 6.2, it is apparent that the polynomial can be regarded
as the superposition of a linear and a periodic function in the interval
0 < 7 < 1. Approximate the underlying periodic function with a periodic
cubic spline by subdividing the above-mentioned interval into N equal
subintervals, while finding the value of N that will yield a maximum ab-
solute value of less than 10~ in the error in

(a) the function values;
(b) the values of the first derivative; and

(¢) the values of the second derivative.

Repeat Exercise 6.7 for the 4-5-6-7 polynomial of Fig. 6.3.

A pick-and-place operation is being planned that should observe manufac-
turer’s bounds on the maximum joint rates delivered by the motors of a
given robot. To this end, we have the following choices: (a) a 4-5-6-7 poly-
nomial; (b) a symmetric trapezoidal speed profile like that of Fig. 6.7, with
71 = 0.20; and (¢) a cycloidal motion. Which of these motions produces
the minimum time in which the operation can be performed?

The maximum speed of a cycloidal motion was found to be 2. By noticing
that the cycloidal motion is the superposition of a linear and a periodic
function, find a cubic-spline motion that will yield a maximum speed of
1.5, with the characteristics of the cycloidal motion at its end points.

The acceleration of a certain motion s(7), for 0 < 7 < 1, is given at a
sample of instants { 74 }{¥ in the form

§'"(13,) = Asin(277y,)

Find the cubic spline interpolating the given motion so that its second
time-derivative will attain those given values, while finding A such that



256

6.12

6. Trajectory Planning: Pick-and-Place Operations

s(0) = 0 and s(1) = 1. Hint: A combination of a linear function and a
periodic spline can yield this motion. In order to find the function values of
the periodic spline, exploit the linear relation between the function values
and its second derivatives at the spline supporting points, as discussed in
Section 6.6.

A robotic joint has been found to require to move, within a time-interval
T, with a set of speed values {ék } at equally spaced instants. Find
the natural cubic spline that interpolates the underlying motion so that
the angular displacement undergone from beginning to end is a given Ag.
Hint: You will need to establish the linear relation between the spline func-
tion values and those of its first derivative.



Chapter 7

Dynamics of Serial Robotic
Manipulators

7.1 Introduction

The main objectives of this chapter are (i) to devise an algorithm for the real-
time computed-torque control and (if) to derive the system of second-order or-
dinary differential equations (ODE) governing the motion of an n-axis manip-
ulator. We will focus on serial manipulators, the dynamics of a much broader
class of robotic mechanical systems, namely, parallel manipulators and maobile
robots, being the subject of Chapter 12. Moreover, we will study mechanical
systems with rigid links and rigid joints and will put aside systems with flexible
elements, which pertain to a more specialized realm.

7.2 Inverse vs. Forward Dynamics

The two basic problems associated with the dynamics of robotic mechanical sys-
tems, namely, the inverse and the forward problems, are thoroughly discussed in
this chapter. The relevance of these problems cannot be overstated: the former
is essential for the computed-torque control of robotic manipulators, while the
latter is required for the simulation and the real-time feedback control of the
same systems. Because the inverse problem is purely algebraic, it is conceptu-
ally simpler to grasp than the forward problem, and hence, the inverse problem
will be discussed first. Moreover, the inverse problem is also computationally
simpler than the forward problem. In the inverse problem, a time-history of
either the Cartesian or the joint coordinates is given, and from knowledge of
these histories and the architecture and inertial parameters of the system at
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hand, the torque or force requirements at the different actuated joints are de-
termined as time-histories as well. In the forward problem, current values of the
joint coordinates and their first time-derivatives are known at a given instant,
the time-histories of the applied torques or forces being also known, along with
the architecture and the inertial parameters of the manipulator at hand. With
these data, the values of the joint coordinates and their time-derivatives are
computed at a later sampling instant by integration of the underlying system
of nonlinear ordinary differential equations.

The study of the dynamics of systems of multiple rigid bodies is classical, but
up until the advent of the computer, it was limited only to theoretical results and
areduced number of bodies. First Uicker (1965) and then Kahn (1969) produced
a method based on the Euler-Lagrange equations of mechanical systems of rigid
bodies that they used to simulate the dynamical behavior of such systems.
A breakthrough in the development of algorithms for dynamics computations
was reported by Luh et al. (1980), who proposed a recursive formulation of
multibody dynamics that is applicable to systems with serial kinematic chains.
This formulation, based on the Newton-Euler equations of rigid bodies, allowed
the calculation of the joint torques of a six-revolute manipulator with only 800
multiplications and 595 additions, a tremendous gain if we consider that the
straightforward calculation of the Euler-Lagrange equations for the same type
of manipulator involves 66,271 multiplications and 51,548 additions, as pointed
out by Hollerbach (1980). In the foregoing reference, a recursive derivation of the
Euler-Lagrange equations was proposed, whereby the computational complexity
was reduced to only 2,195 multiplications and 1,719 additions.

The foregoing results provoked a discussion on the merits and demerits of
each of the Euler-Lagrange and the Newton-Euler formulations. Silver (1982)
pointed out that since both formulations are equivalent, they should lead to
the same computational complexity. In fact, Silver showed how to derive the
Euler-Lagrange equations from the Newton-Euler formulation by following an
approach first introduced by Kane (1961) in connection with nonholonomic sys-
tems. Kane and Levinson (1983) then showed how Kane’s equations can be
applied to particular robotic manipulators and arrived at lower computational
complexities. They applied the said equations to the Stanford Arm (Paul, 1981)
and computed its inverse dynamics with 646 multiplications and 394 additions.
Thereafter, Khalil et al. (1986) proposed a condensed recursive Newton-Euler
method that reduced the computational complexity to 538 multiplications and
478 additions, for arbitrary architectures. Further developments in this area
were reported by Balafoutis and Patel (1991), who showed that the underly-
ing computational complexity can be reduced to 489 multiplications and 420
additions for the most general case of a six-revolute manipulator, i.e., without
exploiting particular features of the manipulator geometry. Balafoutis and Patel
based their algorithm on tensor analysis, whereby tensor identities are exploited
to their fullest extent in order to reduce the number of operations involved. Li
and Sankar (1992), in turn, reported further savings that allowed them to bring
down those numbers to 459 multiplications and 390 additions.

In this chapter, the inverse dynamics problem is solved with the well-known
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recursive Newton-Euler algorithm, while the forward dynamics problem is han-
dled with a novel approach, based on the reciprocity relations between the
constraint wrenches and the feasible twists of a manipulator. This technique
is developed with the aid of a modeling tool known as the natural orthogonal
complement, thoroughly discussed in Section 7.5.

Throughout the chapter, we will follow a multibody system approach, which
requires a review of the underlying fundamentals.

7.3 Fundamentals of Multibody System Dynam-
ics

7.3.1 On Nomenclature and Basic Definitions

We consider here a mechanical system composed of r rigid bodies and denote by
M; the 6 x 6 inertio dyad—see Section 3.8—of the ith body. Moreover, we let
W;, already introduced in eq.(3.140), be the 6 x 6 angular-velocity dyad of the
same body. As pertaining to the case at hand, the said matrices are displayed

below:
— Iz‘ 6) = Qi 0] .
M1:|:0 mi].jl’ W1=|:O O:|, Z—l,...,T (7.1)

where 1 and O denote the 3 x 3 identity and zero matrices, respectively, while
Q; and I; are the angular-velocity and the inertia matrices of the ith body, this
last being defined with respect to the mass center C; of this body. Moreover,
the mass of this body is denoted by m;, whereas ¢; and ¢; denote the position
and the velocity vectors of C;. Furthermore, let t; denote the twist of the same
body, the latter being defined in terms of the angular velocity vector w;, the
vector of €2;, and the velocity of C;. The 6-dimensional momentum screw p,; is
defined likewise. Furthermore, w! and w{ are defined as the working wrench

and the nonworking constraint wrench exerted on the ith body by its neighbors,

in which forces are assumed to be applied at C;. We thus have, fori =1,...,r,
Wi _ i Liwi w _ [n} c_ [nf
t; = [Cz] y My = [mzcz] y Wi = |:f1W y Wi = sz (72)

where superscripted n; and f; stand, respectively, for the moment and the force
acting on the ith body, the force being applied at the mass center C;. Thus,
whereas w}¥ accounts for forces and moments exerted by both the environment
and the actuators, including driving forces as well as dissipative effects, w¢,
whose sole function is to keep the links together, accounts for those forces and
moments exerted by the neighboring links, which do not produce any mechanical
work. Therefore, friction wrenches applied by the (i —1)st and the (i 4 1)st links
onto the 4th link are not included in w¢'; rather, they are included in w}¥.

Clearly, from the definitions of M, p,;, and t;, we have

M = Miti (73)
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Moreover, from eq.(3.143)!,

;= M;t; + W;n, = M;t; + W;M,t; (7.4)

We now recall the Newton-Euler equations for a rigid body, namely,
Lw; = —~w; X Lw; +nl¥ +nf (7.5a)
mé; = £ +£¢ (7.5b)

which can be written in compact form using the foregoing 6-dimensional twist
and wrench arrays as well as the 6 x 6 inertia and angular-velocity dyads. We
thus obtain the Newton-Euler equations of the ith body in the form

M;i; = ~W;M;t; + w) +w? (7.5¢)

7.3.2 The Euler-Lagrange Equations of Serial
Manipulators

The Euler-Lagrange dynamical equations of a mechanical system are now re-
called, as pertaining to serial manipulators. Thus, the mechanical system at
hand has n degrees of freedom, its n independent generalized coordinates being
the n joint variables, which are stored in the n-dimensional vector 8. We thus

have d (0T oT
pn (55> -3¢ = ¢ (7.6)

where T is a scalar function denoting the kinetic energy of the system and ¢ is
the n-dimensional vector of generalized force. If some forces on the right-hand
side stem from a potential V, we can, then decompose ¢ into two parts, ¢,, and
¢,,, the former arising from V' and termed the conservative force of the system;
the latter is the nonconservative force ¢,,. That is,

_ oV
the above Euler-Lagrange equations thus becoming
d (0L oL
i (5) 5 = (79
where L is the Lagrangian of the system, defined as
L=T-V (7.9)

Moreover, the kinetic energy of the system is simply the sum of the kinetic
energies of all the r links. Recalling eq.(3.145), which gives the kinetic energy
of a rigid body in terms of 6-dimensional arrays, one has

T= i Tz - i %t,iTMiti (710)

1See Exercise 7.1 for an extension of this relation to a system of n rigid bodies.
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whereas the vector of nonconservative generalized forces is given by
6 = o4 oA
"7 86 06
in which IT4 and A denote the power supplied to the system and the Rayleigh
dissipation function, or for brevity, the dissipation function of the system.

The first of these items is discussed below; the latter is only outlined in this
section but is discussed extensively in Section 7.8. First, the wrench w}¥ is
decomposed into two parts, wit and wP, the former being the wrench supplied
by the actuators and the latter being the wrench that arises from viscous and
Coulomb friction, the gravity wrench being not needed here because gravity
effects are considered in the potential V' (@). We thus call w# the active wrench
and wP the dissipative wrench. Here, the wrenches supplied by the actuators
are assumed to be prescribed functions of time. Moreover, these wrenches are
supplied by single-dof actuators in the form of forces along a line of action or
moments in a given direction, both line and direction being fixed to the two bod-
ies that are coupled by an active joint. Hence, the actuator-supplied wrenches
are dependent on the posture of the manipulator as well, but not on its twist.
That is, the actuator wrenches are functions of both the vector of generalized
coordinates, or joint variables, and time, but not of the generalized speeds, or
joint-rates. Forces dependent on the latter to be considered here are assumed
to be all dissipative. As a consequence, they can be readily incorporated into
the mathematical model at hand via the dissipation function, to be discussed
in Section 7.8. Note that feedback control schemes require actuator forces that
are functions not only of the generalized coordinates, but also of the generalized
speeds. These forces or moments are most easily incorporated into the underly-
ing mathematical model, once this model is derived in the state-variable space,
i.e., in the space of generalized coordinates and generalized speeds.

Thus, the power supplied to the ith link, Hf‘, is readily computed as

nf = (wi)t; (7.12a)
Similar to the kinetic energy, then, the power supplied to the overall system

is simply the sum of the individual powers supplied to each link, and expressed
as in eq.(7.12a), i.e.,

(7.11)

T
m4=3%"mf (7.12b)
1

Further definitions are now introduced. These are the 6n-dimensional vec-
tors of manipulator twist, t; manipulator momentum, p; manipulator con-
straint wrench, wC; manipulator active wrench, w4; and manipulator dissi-
pative wrench, w. Additionally, the 6n x 6n matrices of manipulator mass, M,
and manipulator anguler velocity, W, are also introduced below:

t; 1531
t=1:1, u=|:1], (7.13a)
t, Hn
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wy wi wy
wC = : , wi= : , wP= . (7.13b)
Wi Wi Wi

M =diag(My, ..., M,), W = diag(Wyq, ..., W,) (7.13¢)

It is now apparent that, from definitions (7.13b & 7.13¢) and relation (7.3),
we have

p =Mt (7.14)
Moreover, from definitions (7.1) and (7.2),
=Mt + WMt (7.15)

With the foregoing definitions, then, the kinetic energy of the manipulator takes
on a simple form, namely,

T = Leme = 1tTu (7.16)
2 2

which is a quadratic form in the system twist. Since the twist, on the other

hand, is a linear function of the vector 8 of joint rates, the kinetic energy turns

out to be a quadratic form in the vector of joint rates. Moreover, we will assume

that this form is homogeneous in 8, i.e.,

T= %éfl(e)é (7.17)

Notice that the above assumption implies that the base of the robot is fixed
to an inertial base, and hence, when all joints are locked, the kinetic energy
of the robot vanishes, which would not be the case if, for example, the robot
were mounted on the International Space Station. If this were the case, then
the kinetic energy would not vanish even if all robot joints were locked, which
means that the foregoing kinetic-energy expression would include a linear term
in @ and a term independent of the joint-rates. In any event, it is apparent that

1(6) = -?_2—2(:/“) (7.18)
06

which means that the n x n generalized inertia matrix is the Hessian matrix of
the kinetic energy with respect to the vector of generalized speed.
Furthermore, the Euler-Lagrange equations can be written in the form
d (0T oT oV
2=y = 420 o 7.19
dt<59> 56+ 59 = or (7-19a)
Now, from the form of T given in eq.(7.17), the partial derivatives appearing in
the foregoing equation take the forms derived below:

aT

5 =109
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and hence,

d (8T v e,

7 (59) (6)8 +1(6,6)0 (7.19b)
Moreover, in order to calculate the second term of the left-hand side of eq.(7.19a),

we express the kinetic energy in the form

T= %p(O, 6)7o (7.19¢)
where p(6, 0) is the generalized momentum of the manipulator, defined as
p(0,0) =1(6)0 (7.194)
Hence,
8T 1 (op\” .
%6 =3 <5§> 0 (7.19¢)
or
or 1 [8a9)]" .
the Euler-Lagrange equations thus taking on the alternative form
- . AT
o s oo 1100) . OV
1(6)8 + 1(0,0)6 — 21 90 6+ 30 = i (7.20)

Example 7.3.1 (Euler-Lagrange equations of a planar robot) Consider
the manipulator of Fig. 7.1, with links designed so that their mass centers, Ci,
C2, and C3, are located at the midpoints of segments 0105, 0203, and O3 P,
respectively. Moreover, the ith link has o mass m; and a centroidal moment
of inertia in o direction normal to the plane of motion I;, while the joints are
actuoted by motors delivering torques 71, T2, and 73, the lubricant of the joints
producing dissipative torques that we will neglect in this model. Under the as-
sumption that gravity acts in the direction of =Y, find the associated Fuler-
Lagrange equations.

Solution: Here we recall the kinematic analysis of Section 5.7 and the definitions
introduced therein for the analysis of planar motion. In this light, all vectors
introduced below are 2-dimensional, the scalar angular velocities of the links,
ws, for i = 1, 2, 3, being

w1=91, a)2=él +é2, w3=91+92+93

Moreover, the velocities of the mass centers are
X 1,
C1 = 591Ea1
] . 1. .
¢y = 61Ea; + 5(91 + 92)Ea2

. L 1. .
¢3 =60,Ea; + (61 + 02)Eax + 5(91 + 65 + 63)Ea3
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P(z,y)

ARRRRNNNNY
Figure 7.1: A planar manipulator

the kinetic energy then becoming
13
T=y5 > (mill&il|]? + Lw?)
1

The squared magnitudes of the mass-center velocities are now computed using
the expressions derived above. After simplifications, these yield

Jr|? = 7al6?

l|é2]? = a26? + %ag(éf + 2618 + 62) + araz cos 82 (62 + 6,65)

ll&sl|? = a363 + a3(63 + 2610, + 62)
.%@@+@+@+w@+w@+M%)
+2a1a5 cos05(07 + 0105) + ajas cos(y + 63)(62 + 616, + 6165)
~+agas cos O3 (9% + 63 + 26165 + 6165 + 92673)

The kinetic energy of the whole manipulator thus becomes

T= '2—(1110% + 2-1'120162 + 2I239293 + IQQO% + 2[130103 + I330§)
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with coefficients Ij;, for ¢ =1, 2, 3, and j = i to 3 being the distinct entries of
the 3 x 3 matrix of generalized inertia of the system. These entries are given
below:

1

111511+12+I3+4

1
mlaf + mg (a? + Za% + a1a2cQ)

1
+mg (af + a% + Zag + 2a1a9¢2 + a1a3Co3 + a2a3C3>

1 1
Lo=h+13+ 2 [ma <§a§ + alazCz>

1
+ mg (2a§ + §a§ + 2a1a9¢5 + aya3ces + 2020303>]

1 1
Ls=I3 + 5ms <§a§ + arascos + azascs)

1 1
Iy =1L+ 15+ Zmzag + ms (a% + Zaﬁ + a2a3C3)

I3 =I5 + %mg %a% -+ a2a3C3>
- 1 2
Inzs =I5+ Zm3a3
where ¢; and ¢;; stand for cos 8; and cos(6;+0;), respectively. From the foregoing
expressions, it is apparent that the generalized inertia matrix is not a function
of 61, which is only natural, for if the second and third joints are locked while
leaving the first one free, the whole manipulator becomes a single rigid body
pivoting about point O;. Now, the polar moment of inertia of a rigid body in
planar motion about a fixed point is constant, and hence, the first joint variable
should not affect the generalized inertia matrix.
Furthermore, the potential energy of the manipulator is computed as the
sum of the individual link potential energies, i.e.,

1 1
V = 5mlgal sin @, + mag [al sin 61 + §a2 sin(6; + 92)]

1
+masg [al sinf; + a2 sin(91 + 92) + 50,3 sin(01 + 65 + 03):|

while the total power delivered to the manipulator takes the form
Il = 716 + 7205 + 7363

We now proceed to compute the various terms in eq.(7.20). We already have
1(#), but we do not have, as yet, its time-derivative. However, the entries of I
are merely the time-derivatives of the entries of I. From the above expressions
for these entries, their time-rates of change are readily calculated, namely,

j11 = —m2a1a23292 — m3[2a1a28292 + a1a3323(92 + 93) + 0@(133393]
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. 1 . . L .
Iy = 5{—m2a1a23292 — m3[2a102820 + aya3823(02 + 63) + 2a2a38303]}

Iz = —%mg[a1a3823(92 + 03) + aza3s3fs)
Ip = —m3a2a33393

jzs = —%m:«xazasssés

I3 =0

with s;; defined as sin(6; + 6;). It should now be apparent that the time-rate
of change of the generalized inertia matrix is independent of 1, as one should
have expected, for this matrix is independent of §,. That is, if all joints but the
first one are frozen, no matter how fast the first joint rotates, the manipulator
moves as a single rigid body whose polar moment of inertia about O1, the center
of the first joint, is constant. As a matter of fact, I33 is constant for the same
reason and J33 hence vanishes. We have, then,?

.. -’:119:1 + I:126?2 + I:13¢?3
10 = v = | L1201 + D220, + Ir303
I301 + 1230, + I330;

whose components, ¢;, for ¢ = 1, 2, 3, are readily calculated as
= _[m2a1a232 + maai(2a2s2 + 03323)]0.162 —mgag(a1523 + a283)9193

—§[m2a1a252 + maa1(2a282 + 03823)]93 — maag(a1523 + 0283)9293

——;-m3a.3(01823 + a253)63
Ly = —%[mza1a282 + maai (2a2ss + a3523)10165
——;—mgas(alsza + a253)0105 — m3aza3 536265 — %m3a2a3339g
13 = —%m3a1a35239192 - —;—msas(alszs + a283)0105 — %m3a2a3339293

The next term in the right-hand side of eq.(7.20) now requires the calculation
of the partial derivatives of vector 18 with respect to the joint variables, which
are computed below. Let

d(16)

00

its entries being denoted by Igj. This matrix, in component form, is given by

II

0 111,29:1 + 112,24?2 + 113,29:3 I11,39:1 + 112,39:2 + 113,39:3
I'=1{o0 T12,90) + Iop,202 + I23,2603 112,361 + In2,30> + In3,303
0 L3201 + Inz 06y + Iz3 203 Iiz301 + Iz 362 + Is3,303

2, is the Greek letter iota and denotes a vector; according to our notation, its components
are ¢1, L2, and (3.
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with the shorthand notation I;; indicating the partial derivative of I;; with
respect to 8;. As the reader can verify, these entries are given as

I5,=0

I{Q = —[m2a1a282 + m3(2a1a232 + a1a3823)]01

1 . 1 ,
—§[m2a1a232 -+ m3(2a1a232 + a1a3523)]02 - 57’)’1;30,10,382303
. 1 ,
I3 = —mg(aia3s23 + azasss)d; — —2-m3(a1a3323 + 2a2a333)02

1
—5ms (a1a38923 + a20383)03

2/71 =0
1 .
L, = —§[m2a1a232 + m3(2a1a282 + a1a3523)]61
1 . . 1 .
Iés = —§m3(a1a3323 + 2a2a353)01 — maazazssfs — 5m3a2a3s303
I3y =0
y 1 ;
I3, = —§m3a1a3s2301
, 1 o1 .
I = —§m3(a1a3323 + asa3s3 )b — 5m3a2a33302

Now, we define the 3-dimensional vector « below:

aae)]”
v = [—55{' ]

its three components, y;, for 1 = 1, 2, 3, being

m =0

Y2 = —[maaiaz82 + m3z(2a1a08; + alagszg)]éf
—[maaiasss + m3(2a18282 + a1a3323)]9192
—m3a1a33239193

3 = —mg(a1azses + azaszss)di — ma(arassas + 2a2a383)0162

F 2o ..
-~ms3 (a1a3323 -+ aga333)6193 - m3a2a33303 - m3a2a3330203

We now turn to the computation of the partial derivatives of the potential
energy:

gezl = %mlgalcl + mag <a1c1 + %azclz> +mag <0161 + azcro + 2030123)
ov 1 1

% = ’2‘m29a2012 +mag (02612 + 563012?,)

ov

5‘0—3 = §m39a30123
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The Euler-Lagrange equations thus reduce to

. . .. 1 1
I11601 + 11285 + I1303 + ¢ — 5’)/1 + §m1galcl

1 1
+mag{aicr + *2%12(312) +mgg(aier + azerg + §a30123) =T

. . . 1 1
Lol + 9205 + 15303 + 19 — PRe + 5M2gazciz

1
+mag(ascia + 5(130123) = T

Ti36h + Inaby + I33603 + 13 — %’Ys + %ms!}ascms =73

With this example, it becomes apparent that a straightforward differentia-
tion procedure to derive the Euler-Lagrange equations of a robotic manipulator,
or for that matter, of a mechanical system at large, is not practical. For example,
these equations do not seem to lend themselves to symbolic manipulations for
a six-axis manipulator of arbitrary architecture, given that they become quite
cumbersome even for a three-axis planar manipulator with an architecture that
is not so general. For this reason, procedures have been devised that lend them-
selves to an algorithmic treatment. We will study a procedure based on the
natural orthogonal complement whereby the underlying equations are derived
using matrix-times-vector multiplications.

7.3.3 Kane’s Equations

Kane’s equations (Kane and Levinson, 1983), sometimes referred to as D’Alem-
bert’s equations in Lagrangian form are also useful in robot dynamics (Angeles et
al., 1989). A feature of Kane’s equations is that they are derived from the free-
body diagrams of the various rigid bodics constituting the multibody system
at hand. Upon introducing generalized coordinates & la Lagrange, the mathe-
matical model of the gystem is derived, which is equivalent to the underlying
Euler-Lagrange equations. Kane’s equations take a rather simple form, for an
n-dof mechanical system, namely,

G+ g7 =0

where ¢ and ¢* arc the n-dimensional vectors of generalized active force and
wertia force, respectively. With the notation introduced above, these vectors

are given by
[ reeT dwi\ "

and

d’*—“i (f?fi)rrm-é-jL(Q‘f?‘_")T(I-’--i—w-xI- ) (7.21b)
= aq Gy aq Wy 4 Wy . .
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In the above expressions, q§ = dq/dt is the n-dimensional vector of generalized
speeds in Kane’s terminology, while the n x 3 matrices d¢; /8¢ and 8w, /dq are
the partial rates of change of mass-center velocity and angular velocity of the
ith rigid body.

7.4 Recursive Inverse Dynamics

The inverse dynamics problem associated with serial manipulators is studied
here. We assume at the outset that the manipulator under study is of the serial
type with n + 1 links including the base link and n joints of either the revolute
or the prismatic type.

The underlying algorithm consists of two steps: (i) kinematic computations,
required to determine the twists of all the links and their time derivatives in
terms of 6, 0, and 8; and (#4) dynemic computations, required to determine both
the constraint and the external wrenches. Each of these steps is described below,
the aim here being to calculate the desired variables with as few computations as
possible, for one purpose of inverse dynamics is to permit the real-time model-
based control of the manipulator. Real-time performance requires, obviously,
a low number of computations. For the sake of simplicity, we decided against
discussing the algorithms with the lowest computational cost, mainly because
these algorithms, fully discussed by Balafoutis and Patel (1991), rely heavily on
tensor calculus, which we have not studied here. Henceforth, revolute joints are
referred to as R, prismatic joints as P.

7.4.1 Kinematics Computations: Outward Recursions

We will use the Denavit-Hartenberg (DH) notation introduced in Section 4.2
and hence will refer to Fig. 4.7 for the basic notation required for the kinematic
analysis to be described first. Note that the calculation of each Q; matrix, as
given by eq.(4.1e), requires four multiplications and zero additions.

Moreover, every 3-dimensional vector-component transfer from the F; frame
to the Fiy1 frame requires a multiplication by QF. Likewise, every component
transfer from the Fiy1 frame to the F; frame requires a multiplication by Q;.
Therefore, we will need to account for the aforementioned component transfers,
which we will generically term coordinate transformations between successive
coordinate frames. We derive below the number of operations required for such
transformations. If we have [r]; = [r1, 72, r3]T and we need [r];y1, then we
proceed as follows:

[r]iv1 = Q] [r]): (7.22)

and if we recall the form of Q; from eq.(4.1e), we then have

cos b; sin ; 0 r 71 €08 8; + ra8in 6;
[Pligr = | —Assind;  Xjcos®; s ro | = =i+ s
pising; —p;cosf; A 73 wir =+ Airs

23a)
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where A\; = cosq; and u; = sin o, while
r=r18in@; —rycosd; (7.23b)

Likewise, if we have [v];1 = [v1, ve, v3]T and we need [v];, we use the
component transformation given below:

cosf; —A;sinf; p;sind; 1 v1 cosB; —vsin;
[v];= |sinf; A;jcosb; —p;cosb; vy | = | v18in8; +vcosb;
0 Ji Ai V3 Vol + V3A;
(7.24a)
where
U= Ve — U3t (7.24b)

It is now apparent that every coordinate transformation between successive
frames, whether forward or backward, requires eight multiplications and four
additions. Here, as in Chapter 4, we indicate the units of multiplications and
additions with M and A, respectively.

The angular velocity and acceleration of the ith link are computed recursively
as follows:

wi-1 + 6;e;, if the ith joint is R
wi = LT ' ! o (7.25a)
Wi-1, if the ith joint is P
Wi—1 + wi—1 X G;e; + G;e;, if the ith joint is R
wiz ‘z 1 -1 A 1%, . J (725b)
Wi_1, if the ith joint is P
for ¢ = 1, 2,...,n, where wg and wg are the angular velocity and angular

acceleration of the base link. Note that egs.(7.25a & b) are frame-invariant;
i.e., they are valid in any coordinate frame, as long as the same frame is used
to represent all quantities involved. Below we derive the equivalent relations
applicable when taking into account that quantities with a subscript ¢ are avail-
able in F;;1-coordinates. Hence, operations involving quantities with different
subscripts require a change of coordinates, which is taken care of by the corre-
sponding rotation matrices.

In order to reduce the numerical complexity of the algorithm developed here,
all vector and matrix quantities of the ¢th link will be expressed in F; 1. Note,
however, that the two vectors e; and e; 1 are fixed to the ith link, which is
a potential source of confusion. Now, since e; has very simple components in
F;, namely, [0, 0, 1], this will be regarded as a vector of the (i — 1)st link.
Therefore, this vector, or multiples of it, will be added to vectors bearing the
(i—1)st subscript without any coordinate transformation. Moreover, subscripted
brackets, as introduced in Section 2.2, can be avoided if all vector and matrix
quantities subscripted with 4, except for vector e;, are assumed to be expressed
in F;t1. Furthermore, in view of the serial type of the underlying kinematic
chain, only additions of quantities with two successive subscripts will appear in
the relations below.
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developed by this wrench on t, for any possible motion of the manipulator, is
Zero, i.e.,

tTw® =0 (7.51)
On the other hand, if the two sides of eq.(7.50) are transposed and then multi-
plied by a 6n-dimensional vector A, one has

tTKTA =0 (7.52)
Upon comparing egs.(7.51) and (7.52), it is apparent that w is of the form
w¢ =KTX (7.53)

More formally, the inner product of w® and t, as stated by eq.(7.51), vanishes,
and hence, t lies in the nullspace of K, as stated by eq.(7.50). This means that
wC lies in the range of K7, as stated in eq.(7.53). The following step will be
to represent t as a linear transformation of the independent generalized speeds,
i.e., as

t=T0 (7.54)

with T defined as a 6n X n matrix that can be fairly termed the twist-shaping
matriz. Moreover, the above mapping will be referred to as the twist-shape
relations. The derivation of expressions for matrices K and T will be described
in detail in Subsection 7.5.1 below. Now, upon substitution of eq.(7.54) into
eq.(7.50), we obtain )

KTé=0 (7.55a)

Furthermore, since the degree of freedom of the manipulator is n, the n
generalized speeds {6;}7 can be assigned arbitrarily. However, while doing
this, eq.(7.55a) has to hold. Thus, the only possibility for this to happen is that
the product KT vanish, i.e.,

KT=0 (7.55b)

where O denotes the 6n x n zero matrix. The above equation states that T is
an orthogonal complement of K. Because of the particular form of choosing this
complement—see eq.(7.54)—we refer to T as the natural orthogonal complement
of K (Angeles and Lee, 1988).
In the final step of this method, t of eq.(7.48) is obtained from eq.(7.54),
namely, ) )
t=TO+TO (7.56)
Furthermore, the uncoupled equations, eqs.(7.48), are multiplied from the left
by TT, thereby eliminating w® from those equations and reducing these to a

system of only n independent equations, free of nonworking constraint wrenches.
These are nothing but the Euler-Lagrange equations of the manipulator, namely,

16 = ~TT(MT + WMT)8 + TT(w* + wP + wF) (7.57)

where I is the positive definite n x n generalized inertio matriz of the manipu-
lator and is defined as
I=TTMT (7.58)
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which is identical to the inertia matrix derived using the Euler-Lagrange equa-
tions, with 8 as the vector of generalized coordinates. Now, we let 7 and é
denote the n-dimensional vectors of active and dissipative generalized force.
Moreover, we let C(8, 8)8 be the n-dimensional vector of quadratic terms of
inertia force. These items are defined as

r=TTwh, 6=TTwP, ~=TTwC,
C(6, 6) = TTMT + TTWMT (7.59)

Clearly, the sum T+ & produces ¢, the generalized force defined in eq.(7.11).
Thus, the Euler-Lagrange equations of the system take on the form

I0=—-CO+1+d+7 (7.60)

If, moreover, a static wrench w" acts onto the end-effector, with the force
applied at the operation point, then its effect onto the above model is taken
into account as indicated in eq.(5.50). Thus, a term JTw" is added to the
right-hand side of the above model:

10=-CO+1++~v+I"wW"W (7.61)

As a matter of fact, & is defined in eq.(7.59) only for conceptual reasons. In
practice, this term is most easily calculated once a dissipation function in terms
of the generalized coordinates and generalized speeds is available, as described
in Section 7.8. Thus, § is computed as

é= ——% (7.62)
00

It is pointed out that the first term of the right-hand side of eq.(7.60) is
quadratic in @ because matrix C, defined in eq.(7.59), is linear in 8. In fact, the
first term of that expression is linear in a factor T that is, in turn, linear in 8.
Moreover, the second term of the same expression is linear in W, which is linear
in @ as well. However, C is nonlinear in 6. Because of the quadratic nature
of that term, it is popularly known as the vector of Coriolis and centrifugal
forces, whereas the left-hand side of that equation is given the name of vector
of inertia forces. Properly speaking, both the left-hand side and the first term

of the right-hand side of eq.(7.60) arise from inertia forces.

Example 7.5.1 (A minimum-time trajectory) A pick-and-place operation
is to be performed with an n-axis manipulator in the shortest possible time.
Moreover, the maneuver is defined so that the n-dimensional vector of joint
variables is given by a common shape function s(z), with0 < 2 <1 and 0 <
s <1, which is prescribed. Thus, for a fized n-dimensional vector 6q, the time-
history of the joint-variable vector, 8(t), is given by

9(t)=90+s<%)A9, 0<t<T
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with T defined as the time taken by the maneuver, while 8y and 6y + A8 are
the volues of the joint-variable vector at the pick- and the place-postures of the
manipulator, respectively. These vectors are computed from inverse kinematics,
as explained in Chapter 5. Furthermore, the load-carrying capacity of the ma-
nipulator is specified in terms of the maximum torques delivered by the motors,
namely,

|m| <75, for i=1,...,n
where the constant values T; are supplied by the manufacturer. In order to keep

the analysis simple, we neglect power loses in this example. Find the minimum
time in which the maneuwver can take place.

Solution: Let us first calculate the vector of joint-rates and its time-derivative:

o(t) = %s’(.’z;)AO, () = ~"(2)A0, 3=

Now we substitute the above values into the mathematical model of eq.(7.60),
with §(¢) = 0, thereby obtaining

™ =1(6)8 + C(6,8)0 55" ()1(x) A0 + T—12-s’2(m)C(m)A0 = %Q—f(m)

with f(z) defined, of course, as
f(z) = [I(z)s" (z) + C(z)s'* (x)]AO

the 1/T2 factor in the term of Coriolis and centrifugal forces stemming from
the quadratic nature of the C(8,0)8 term. What we now have is the vector of
motor torques, T, expressed as a function of the scalar argument z. Now, let
fi(z) be the ith component of vector f(z), and

F; =max{|fi(z)|}, for i=1,...,n

We would then like to have each value F; produce the maximum available torque
T;, namely,

_F
= T
and hence, for each joint we have a value T; of T given by

Ti i=1,...n

Obviously, the minimum value sought, Tiin, is nothing but the maximum of the
foregoing values, i.e.,
Tmin = mlax{Ti}?

thereby completing the solution.
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7.5.1 Derivation of Constraint Equations and
Twist-Shape Relations

In order to illustrate the general ideas behind the method of the natural orthogo-
nal complement, we derive below the underlying kinematic constraint equations
and the twist-shape relations. We first note, from eq.(7.25a), that the relative
angular velocity of the ith link with respect to the (i — 1)st link, w; — w;_y, is
8;e;. Thus, if matrix E; is defined as the cross-product matrix of vector e;, then,
the angular velocities of two successive links obey a simple relation, namely,

E,-(wi - w,-_l) =0 (763)
Furthermore, we rewrite now eq.(7.33a) in the form
¢ ~¢ 1 +Ruw; +D_1w;1 =0 (764)

where D; and R; are defined as the cross-product matrices of vectors 4;, defined
in Subsection 7.4.1 as a; — p;, and p,, respectively. In particular, when the first
link is inertial, egs.(7.63 & b), as pertaining to the first link, reduce to

E1w1 =0 (765&)
& +Riwy =0 (7.65b)

Now, egs.(7.63) and (7.64), as well as their counterparts for i = 1, egs.(7.65a

& b), are further expressed in terms of the link twists, thereby producing the
constraints below:

Klltl =0 (766&)

Ki,i—lti—l +Kut; =0, i=1,...,n (766b)

with K11 and K5, for i = 2,...,n and j =4 — 1,4, defined as

[E; O
Kll = Rll 1] (767&)
_[-E; ©
Kiim1 = | p, | _1] (7.67b)
Ky = IE{'. (1)] (7.67¢)

where 1 and O denote the 3 x 3 identity and zero matrices, respectively. Fur-
thermore, from eqs.(7.66a & b) and (7.67a-c), it is apparent that matrix K
appearing in eq.(7.55b) takes on the form

Kii O Og --- Os¢ O
Ky Ky O --- Os O¢

K=| : : s : : (7.68)
Os O Og -+ Kp_in1 Og

06 06 06 e Kn,n—l Knn
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Figure 7.6: Kinematic subchain comprising links 7, j +1..., ¢

with Og denoting the 6 x 6 zero matrix.

Further, the link-twists are expressed as linear combinations of the joint-rate
vector . To this end, we define the 6 x n partial Jacobian J; as the matrix
mapping the joint-rate vector @ into the twist t; of that link, i.e.,

JO=t; (7.69)
whose jth column, t;;, is given, for ¢, j =1, 2, ..., n, by
(o, S, | i<
€e; X Iyj
t;; = (7.70)
0 .
[ 0} , otherwise.

with r;; illustrated in Fig. 7.6 and defined, for ¢, j = 1,...,n, as

aj +ajpr+--ta+p;, <G
r; =4 Po if j =4 (7.71)
0, otherwise.

It is noteworthy that, for a given ¢ and a given j < ¢, a submanipulator of
i — (j — 1) axes is obtained. The {r;; };'-:1 vectors are the counterparts of the
{ri;}1 vectors of Section 5.2

We can thus readily express the twist t; of the ¢th link as a linear combination
of the first ¢ joint rates, namely,

t; =élti1 +é2ti2+“‘+éitii, i=1,...,n (772)
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and hence, matrix T of eq.(7.54) takes the form

tiy 0 -+ 0
tor toa -+ O

T=| . .. . (7.73)
tnl th ot tnn

As a matter of verification, one can readily prove that the product of matrix
T, as given by eq.(7.73), by matrix K, as given by eq.(7.68), vanishes, and
hence, relation (7.55b) holds.

The kinematic constraint equations on the twists, for the case in which the
ith joint is prismatic, are derived likewise. In this case, we use eqs.(7.34a & ¢),
with the latter rewritten more conveniently for our purposes, namely,

W; = Wi_1 (774&)
& = €im1 +wic1 X (Gim1 + p; + biey) + bey (7.74b)

We now introduce one further definition:
R;=D) , +R; (7.75)

where D)_; is the cross-product matrix of vector d;_;, defined in Subsec-
tion 7.4.1 as d;_; — p;_,, while R; is the cross-product matrix of p; + bse;.
Hence, eq.(7.74b) can be rewritten as

¢; — ¢ + Riwi — i)iei =0 (7.76)

Upon multiplication of both sides of eq.(7.76) by E;, the term in b; cancels, and
we obtain

Ei(éi - éz‘——l + Riw,) =0 (777)

Hence, egs.(7.74a) and (7.77) can now be regrouped in a single 6-dimensional
linear homogeneous equation in the twists, namely,

Kii1ti- + Kt =0 (7.78)

the associated matrices being defined below:

-1 0
K1 = [ o —Ei] (7.79a)
. 1 (6]

K, = [EzR; E, (7.79b)

with 1 and O defined already as the 3 x 3 identity and zero matrices, respectively.

If the first joint is prismatic, then the corresponding constraint equation takes
on the form

Kj;t1=0 (7.80)
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with K/, defined as

, 1 O
«=[3 2] o~
Furthermore, if the kth pair is prismatic and 1 < k <4, then the twist t; of
the 4th link changes to

ti:éltil+"'+bktlz‘k+"'+0’itii, i:l,...,n (782)

where t, is defined as

0
t), = [ek] (7.83)

In order to set up eq.(7.60), then all we now need is T, which is computed
below. Two cases will be distinguished again, namely, whether the joint at hand
is a revolute or a prismatic pair. In the first case, from eq.(7.70) one readily
derives, for i, 7 =1,2,...,n,

[ w; X ey ] if i .
; ) I
. Ww; X e;) Xry +e; Xy
tyy = E) 3 ) X xij e x by (7.84)
[0] ) otherwise
where, from eq.(7.71),
Py =wj Xaj+ -t wier X a1 +wi X p; (7.85)

On the other hand, if the kth pair is prismatic and 1 < k < 4, then from
eq.(7.83), the time-rate of change of t!, becomes

i = [wk o ek} (7.86)
thereby completing the desired derivations.

Note that the natural orthogonal complement can also be used for the inverse
dynamics calculations. In this case, if the manipulator is subjected to a gravity
field, then the twist-rate of the first link will have to be modified by adding
a nonhomogeneous term to it, thereby accounting for the gravity-acceleration
terms. This issue is discussed in Section 7.7.

7.5.2 Noninertial Base Link

Noninertial bases occur in space applications, e.g., in the case of a manipulator
mounted on a space platform or on the space shuttle. A noninertial base can be
readily handled with the use of the natural orthogonal complement, as discussed
in this subsection. Since the base is free of attachments to an inertial frame,
we have to add its six degrees of freedom (dof) to the n dof of the rest of
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the manipulator. Correspondingly, t, w¢, w4, and w” now become 6(n + 1)-
dimensional vectors. In particular, t takes the form

t=[tF 7 ... 7" (7.87)

with to defined as the twist of the base. Furthermore, the vector of independent
generalized speeds, 6, is now of dimension n + 6, its first six components being
those of tg, the other n remaining as in the previous case. Thus, 8 has the
components shown below:

6=[tT 6, ... 6,)7 (7.88)

Correspondingly, T becomes a 6(n + 1) x (n 4+ 6) matrix, namely,

T= [ o ,?,] (7.89)

where 1 is the 6 x 6 identity matrix, O denotes the 6 x n zero matrix, O’
represents the 6n x 6 zero matrix, and T’ is the 6n X n matrix defined in
eq.(7.73) as T. Otherwise, the model remains as in the case of an inertial base.
A word of caution is in order here. Because of the presence of the twist
vector tg in the definition of the vector of generalized speeds above, the latter
cannot, properly speaking, be regarded as a time-derivative. Indeed, as stud-
ied in Chapter 3, the angular velocity appearing in the twist vector is not a
time-derivative. Hence, the vector of independent generalized speeds defined in
eq.(7.88) is represented instead by v, which does not imply a time-derivative,

namely,
v=[tT 6 --- 6,17 (7.90)

7.6 Manipulator Forward Dynamics

Forward dynamics is needed either for purposes of simulation or for the model-
based control of manipulators (Craig, 1989), and hence, a fast calculation of the
joint-variable time-histories 8(t) is needed. These time-histories are calculated
from the model displayed in eq.(7.61), reproduced below for quick reference, in
terms of vector 8(t), i.e.,

10 = —C(0,0)0 + 7(t) + 6(0,0) + v(0) + ITw" (7.91)

Clearly, what is at stake here is the calculation of 6 from the foregoing model.
Indeed, the right-hand side of eq.(7.91) can be calculated with the aid of the
Newton-Euler recursive algorithm, as we will describe below, and needs no fur-
ther discussion for the time being. Now, the calculation of 6 from eq.(7.91) is
similar to the calculation of @ from the relation between the joint-rates and the
twist, derived in Section 5.2. From the discussion in that section, such calcula-
tions take a number of floating-point operations, or flops, that is proportional
to n3, and is thus said to have a complexity of O(n%)—read “order n3.” In
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real-time calculations, we would like to have a computational scheme of O(n).
In attempting to derive such schemes, Walker and Orin (1982) proposed a pro-
cedure that they called the composite rigid-body method, whereby the number
of flops is minimized by cleverly calculating I(8) and the right-hand side of
eq.(7.91) by means of the recursive Newton-Euler algorithm. In their effort,
they produced an O(n?) algorithm to calculate . Thereafter, Featherstone
(1983) proposed an O(n) algorithm that is based, however, on the assumption
that Coriolis and centrifugal forces are negligible. The same author reported
an improvement to the aforementioned algorithm, namely, the articulated-body
method, that takes into account Coriolis and centrifugal forces (Featherstone,
1987.) The outcome, for an n-revolute manipulator, is an algorithm requiring
300n — 267 multiplications and 279n — 259 additions. For n = 6, these figures
yield 1,533 multiplications and 1,415 additions. Li (1989) reported an O(n?)
algorithm leading to 783 multiplications and 670 additions.

In this subsection, we illustrate the application of the method of the nat-
ural orthogonal complement to the modeling of an n-axis serial manipulator
for purposes of simulation. While this algorithm gives an O(n®) complexity,
its derivation is straightforward and gives, for a six-axis manipulator, a com-
putational cost similar to that of Featherstone’s, namely, 1,596 multiplications
and 1,263 additions. Moreover, a clever definition of coordinate frames leads to
even lower figures, i.e., 1,353 multiplications and 1,165 additions, as reported
by Angeles and Ma (1988). Further developments on robot dynamics using the
natural orthogonal complement have been reported by Saha (1997, 1999), who
proposed the decoupled natural orthogonal complement as a means to enable
the real-time inversion of the mass matrix.

The manipulator at hand is assumed to be constituted by n moving links
coupled by n kinematic pairs of the revolute or prismatic types. Again, for
brevity, the base link is assumed to be inertial, noninertial bases being readily
incorporated as described in Subsection 7.5.2. For the sake of conciseness, we
will henceforth consider only manipulators mounted on an inertial base. More-
over, we assume that the generalized coordinates € and the generalized speeds
6 are known at an instant ¢, along with the driving torque 7(t), for t > t;, and
of course, the DH and the inertial parameters of the manipulator are assumed
to be known as well. Based on the foregoing information, then, 6 is evaluated
at t; and, with a suitable integration scheme, the values of 8 and @ are de-
termined at instant t54;. Obviously, the governing equation (7.60) enables us
to solve for b(tk). This requires, of course, the inversion of the n X n matrix
of generalized inertia I. Since the said matrix is positive-definite, solving for
6 from eq.(7.60) can be done economically using the Cholesky-decomposition
algorithm (Dahlquist and Bjorck, 1974). The sole remaining task is, then, the
computation of I, the quadratic inertia term C@, and the dissipative torque 4.
The last of these is dependent on the manipulator and the constitutive model
adopted for the representation of viscous and Coulomb friction forces and will
not be considered at this stage. Models for dissipative forces will be studied in
Section 7.8. Thus, the discussion below will focus on the computation of I and
C@0 appearing in the mathematical model of eq.(7.91).
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Next, the 6n x 6n matrix M is factored as
M=H"H (7.92)

which is possible because M is at least positive-semidefinite. In particular,
for manipulators of the type at hand, M is positive-definite if no link-mass is
neglected. Moreover, due to the diagonal-block structure of this matrix, its
factoring is straightforward. In fact, H is given simply by

H = diag(H,, ..., H,) (7.93)
each 6 x 6 block H; of eq.(7.93) being given, in turn, as
N; O
ne [N 9] o

with 1 and O defined as the 3 x 3 identity and zerc matrices, respectively. We
thus have

M; = HTH; (7.95)

Furthermore, N; can be obtained from the Cholesky decomposition of I;, while
n; is the positive square root of m;, i.e.,

L, =N{N;, m;=n? (7.96)

Now, since each 6 x 6 M; block is constant in body-fixed coordinates, the above
factoring can be done off-line. From the foregoing definitions, then, the n x n
matrix of generalized inertia I can now be expressed as

1=PTP (7.97)
where P is defined, in turn, as the 6n x n matrix given below:
P=HT (7.98)

The computation of P is now discussed. If we recall the structure of T from
eq.(7.73) and that of H from eq.(7.93), along with the definition of P, eq.(7.98),
we readily obtain

Hityy 0 ... 0 pi 0 - 0
Hoto; Hotoy -+ 0 P21 P22

P= ) ) . ) =1 . ) (7.99)
H.t,y Hptno -+ Hpty, Prni Pn2 - Pan

with 0 denoting the 6-dimensional zero vector. Moreover, each of the above
nontrivial 6-dimensional arrays p;; is given as

Nie; . e
if the jth joint is R
nie; X ry;

Pi; = Hiti]’ = (7100)
[ 0 ] if the jth joint is P

n;€e;
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Thus, the (4, 7) entry of I is computed as the sum of the inner products of
the (k,7) and the (k,j) blocks of P, for k = j,...,n, i.e.,

Iij = Iji = Zp{ipkj (7101)
k=j

with both pg; and py; expressed in Fj.y1-coordinates, i.e., in kth-link coordi-
nates. Now, the Cholesky decomposition of I can be expressed as

I=L7L (7.102)

where L is an n x n lower-triangular matrix with positive diagonal entries.
Moreover, eq.(7.91) is now rewritten as

LTLO = —(CO-ITwW — ) + 6+ 7 (7.103)

If we now recall eq.(7.91), it is apparent that the term inside the parentheses in
the right-hand side of the above equation is nothing but the torque required to
produce the motion prescribed by the current values of @ and 8, in the absence
of dissipative wrenches and with zero joint accelerations, when the manipulator
is acted upon by a static wrench w". That is, if we call T the torque T of
€q.(7.91) under the foregoing conditions, then

CO-ITwW —y =17 =T (7.104)

wb =0,9=0
which is most efficiently computed from inverse dynamics, using the recursive
Newton-Euler algorithm, as described in Section 7.4 . Now eq.(7.102) is solved
for 8 in two steps, namely,

L'x=-F4+7+6 (7.105a)
Lo =x (7.105b)

In the above equations, then, x is first computed from eq.(7.105a) by back-
ward substitution. With x known, 8 is computed from eq.(7.105b) by forward
substitution, thereby completing the computation of 0. The complexity of the
foregoing algorithm is discussed in Subsection 7.6.2.

Alternatively, @ can be calculated in two steps from two linear systems of
equations, the first one underdetermined, the second overdetermined. Indeed,
if we let the product P8 be denoted by y, then the dynamics model of the
manipulator, eq.(7.60), along with the factoring of eq.(7.97), leads to

Ply=-F4+7+4 (7.106a)
Po=y (7.106b)
Thus, in the above equations, y is calculated first as the minimum-norm so-

lution of eq.(7.106a); then, the desired value of 8 is calculated as the least-square
approzimation of eq.(7.106b). These two solutions are computed most efficiently
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using an orthogonalization algorithm that reduces matrix P to upper-triangular
form (Golub and Van Loan, 1989). A straightforward calculation based on the
explicit calculation of the generalized inverses involved is not recommended,
because of the frequent numerical ill-conditioning incurred. Two orthogonaliza-
tion procedures, one based on Householder reflections, the other on the Gram-
Schmidt procedure, for the computation of both the least-square approximation
of an overdetermined system of equations and the minimum-norm solution of
its underdetermined counterpart are outlined in Appendix B.

The complexity of the foregoing calculations is discussed in Subsection 7.6.2,
based on the Cholesky decomposition of the generalized inertia matrix, details
on the alternative approach being available elsewhere (Angeles and Ma, 1988).

7.6.1 Planar Manipulators

The application of the natural orthogonal complement to planar manipulators is
straightforward. Here, we assume that the manipulator at hand is composed of
n links coupled by n joints of the revolute or the prismatic type. Moreover, for
conciseness, we assume that the first link, labeled the base, is fixed to an inertial
frame. We now adopt the planar representation of the twists and wrenches
introduced in Section 5.7; that is, we define the twist of the ith link and the
wrench acting on it as 3-dimensional arrays, namely,

t; = [":] w; = [H (7.107)
where w; is the scalar angular velocity of this link; ¢; is the 2-dimensional
velocity of its mass center, C;; n; is the scalar moment acting on the link; and
f; is the 2-dimensional force acting at C;. Moreover, the inertia dyad is now a
3 x 3 matrix, i.e.,

I, oT ]

M"'E[o mil

(7.108)

with I; defined as the scalar moment of inertia of the ¢th link about an axis
passing through its center of mass, in the direction normal to the plane of
motion, while 0 is the 2-dimensional zero vector and 1 is the 2 x 2 identity
matrix.

Furthermore, the Newton-Euler equations of the ith link take on the forms

n; = L (7.109a)
fi = m,'El- (7109b)

and so, these equations can now be cast in the form
M;i; =wl +wP, i=1,...,n (7.110)

where we have decomposed the total wrench acting on the ¢th link into its work-
ing component w)¥ | supplied by the environment and accounting for motor and
joint dissipative torques, and w{, the nonworking constraint wrench, supplied
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by the neighboring links via the coupling joints. The latter, it is recalled, develop
no power, their sole role being to keep the links together. An essential difference
from the general 6-dimensional counterpart of the foregoing equation, namely,
eq.(7.48), is the lack of a quadratic term in w; in eq.(7.109a) and consequently,
the lack of a W;M;t; term in eq.(7.110).

Upon assembling the foregoing 3n equations of motion, we obtain a system
of 3n uncoupled equations in the form

Mt = w?W + w€

Now, the wrench wW accounts for active forces and moments exerted on the
manipulator, and so we can decompose this wrench into an actuator-supplied
wrench w4 and a gravity wrench w@.

In the next step of the formulation, we set up the kinematic constraints
in linear homogeneous form, as in eq.(7.50), with the difference that now, in
the presence of n kinematic pairs of the revolute or the prismatic type, K is a
3n x 3n matrix. Moreover, we set up the twist-shape relations in the form of
eq.(7.56), except that now, T is a 3n X n matrix. The derivation of the Euler-
Lagrange equations for planar motion using the natural orthogonal complement,
then, parallels that of general 3-dimensional motion, the model sought taking
the form

1(6)0+C0,0)0 =1 +~+6 (7.111a)

with the definitions
1() = TTMT, C(6,6) = TTMT, (7.111b)
r=TTw4, ~y=TTw% 6=TTwP (7.111c)

We can illustrate best this formulation with the aid of the example below.

Example 7.6.1 (Dynamics of a planar three-revolute robot) Derive the
model of the robot of Fig. 7.1, under the assumptions of Example 7.3.1, but now
using the natural orthogonal complement.

Solution: We start by deriving all kinematics-related variables, and thus,

w1=é1, w2=91+92, w3 = 01 + s + 63

Furthermore,

t1 =61t

to = O1ta1 + Oatao

t3 = O1t31 + atsa + O3t33
where

tin = [Ein] - [Eih] B [(1/5]331}



7.6 Manipulator Forward Dynamics 295

= :Ell‘lz] B ;E(all*‘pz)] - [E(al +1(1/2)a2)}

U I T O I O 1

22~ _Erzz_ - _Ep2 - (1/2)Ea2

N | 1 _ 1

3= _El‘13_ - _E(a1+a2+p3) - E(a1 +32+(1/2)a3)

1 1 1
ba2 = | Era3 | - | E(as + p3)] = [E(a2 + (1/2)a3)]

oz = _EZJ - [(1/21>Ea3]

and hence, the 9 x 3 twist-shaping matrix T becomes

1 0 0
(1/2)Eay 0 0
T 1 1 0
E(a; + (1/2)az2) (1/2)Ea, 0
1 1 1
E(a; +az + (1/2)az) E(az +(1/2)az) (1/2)Eas

The 9 x 9 matrix of inertia dyads of this manipulator now takes the form
M= diag(Ml, M2, M3)

with each 3 x 3 M; matrix defined as

: T
MZ-E[I’ 0 ]

0 myl

Now, the 3 x 3 generalized inertia matrix is readily derived as
I=1"MT

whose entries are given below:

I, = tIITIM1t11 + thletm + t§1M3t31
Lia = t3;Matas + t7, Matss = Ing

Iis =t Mstas = I3y

Iy = t5,Matos + t1,Mstss

Iy = t3,M3stss = Ino

I3 = t33Mjtas

Upon expansion, the above entries result in exactly the same expressions as
those derived in Example 7.3.1, thereby confirming the correctness of the two
derivations. Furthermore, the next term in the Euler-Lagrange equations is
derived below. Here, we will need T, which is readily derived from the above
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expression for T. In deriving this time-derivative, we note that in general, for
i=1,2,3,

éi = w,-Ea,-, E2az- = —a;
and hence,
0 0 0
(1/2)6,a4 0 0
s . 0 0 0
elal + (1/2)01232 (1/2)61232 0
, .0 _ . 0 0
61a; + 01282 + (1/2)0123a3  O12ap + (1/2)0123a3 (1/2)0123a3

where 6,5 and 9123 stand for §; + §5 and 6, + s + 93, respectively.
We now can perform the product T'MT, whose (i, j) entry will be repre-
sented as u;;. Below we display the expressions for these entries:

1 : m :
H11 = —§[m2a1a232 + m3(2a1a282 + a1a3823)]02 — —;(a1a3323 + asa3s3)63

1 L
Hi2 = —§[m201a282 + m3(2a1a232 -+ ala3823)](01 + 92)

1
—§m3 (a1a3823 + a2a353)03
1 . . .
H13 = —§m3(a1a3sz3 + asa3ss) (01 + 62 + 63)
1 . 1 .
Uot = 5[mzalagsz + m3(2a1a282 + a1a3823)]01 — §m3a2a33363
1 .
Ho2 = —§m3a2a33303

1 . , .
M2g = —§m3a2a333(01 + 0 + 03)

1 ) .
M3l = —2-m3[(a1a3323 + a2a383)01 + azass3bs)

1 .
M3y = §m3a2a333(01 +6,)
p33 =0

Now, let us define o
v =T'MTH

whose three components are given below:
vy = —[m2a1a232 + mg3 (2a1a232 + a1a3323)]9102 — mg(ala3323 + a2a333)0103

1 .
—§[m2a1a232 + ms3 (2a1a252 + a1a3323)]0§

.. 1 .
2
—mg(a1a3823 + a2a333)0293 - §m3(a1a3323 + (120333)03
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vy = —;—[mgal@sz + m3(2a1a255 + a1a3593)]67 — M3a203536103
—mgazagsssls — %m3aza35393
vy = §m3(a1a3323 + a20383)6? + maasasssf b + %m3a2a3339§
The mathematical model sought, thus, takes the form
1(0)0 +v(9,8) =T+~
where 6 = 0 because we have not included dissipation. Moreover, ~ is derived

as described below: Let w¢ be the gravity wrench acting on the ith link, w®
then being

w{
wl = |w§
w
and
wl = 0 wl = 0 wi = 0 .
! —magj|’ % |-megi|’ "% T |-magi
Therefore,
y = TTwC
g mia] Ej + ma(2a; + a2)TEj + ms[2(a; + as) + a3) " Ej
== mza{Ej + m3(2a2 + a3)TEj
2 \-a2
mgaz Ej
But
alEj = —ali= —ajcosf;
alEj = —ali= —aycos(6; +6,)
alEj = —ali= —ascos(6) + 02 + 03)
Hence,
—miaic1 — 2ma(aicr + a2¢12) — 2mg(aiey + agci2 + azcies)
7=35 —Ma@2c12 — 2m3(asciz + a3c123)

—mM3a3C123

with the definitions for ¢y, ¢12, and cj123 introduced in Example 7.3.1. As the
reader can verify, the foregoing model is identical to the model derived with the
Euler-Lagrange equations in that example.

Example 7.6.2 (Dynamics of a spatial 3-revolute robot) The robot of
Fig. 4.15 is reproduced in Fig. 7.7, in a form that is kinematically equivalent to
the sketch of that figure, but more suitable for the purposes of this example. For
this robot, (i) find its inertia matriz ot the configuration depicted in that figure;
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Figure 7.7: Mass-center locations of the robot of Fig. 4.19

(i1) find the time-rate of change of the inertia matriz under a maneuver whereby
61 =0, =0;=ps! and by = 05 = b5 = 0; and (iii) under the same maneuver,
find the centrifugal and Coriolis terms of its governing equation. Furthermore,
assume that oll links are identical and dynamically isotropic. What we mean
by “dynamically isotropic” is that the moment of inertia of all three links about
their mass centers are proportional to the 3 x 3 identity matriz, the proportional-
ity factor being I. Moreover, all three links are designed so that the mass center
of each is located as shown in Fig. 7.7.

Solution:

(i) Henceforth, we represent all vectors and matrices with respect to the Fi-
frame of Fig. 7.7, while denoting by i, j, and k the unit vectors parallel to
the Xi, Y7, and Z; axes, respectively. Under these conditions, we have,
for the unit vectors parallel to the revolute axes,

e1=k, e2=j, e3=i

while vector a; is directed from the origin of F; to that of F;;4, for ¢ =
1,2,3. Hence,

a)=—al, ay=a(j—k), az=a(i+k)

Likewise, the position vectors of the mass centers, p,, for i = 1, 2, and 3,
with respect to the origins of their respective frames, are given by

1 ..
P = -Q—a(—l +3)
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1 . ..
P = 5“(1 +2j—k)
1

We can now calculate the various 6-dimensional arrays t;;, for ¢ = 1, 2, 3,
and j =1till ¢, i.e.,

ti = e _ k
1= le1 xp; | | —(a/2)(i+])
k

ty = _e1>< 31+P2)] [ (a/2)(21 +j) ]

(
t”:_eszm]‘[ i)
|

1k
ts2 = | es x ( a2+P3] [ (a/2)(i +2k)]

e3

t33 = [es xps] - [—(0/2) ]

and so, the 18 x 3 matrix T is given by

tay =
81 | €1 X a1+a2+p3

k 0 0
—(a/2)({+j) 0 0
T = k i 0
~(a/2)l£2i+j) —(a/2).(i+k) 9
J 1

—ai —(a/2)(i+2k) —(a/2)]

Moreover, the 6 x 6 inertia dyad of the ith link takes the form

I1 O

Mi:[O ml

}, i=1,2,3

with 1 and O denoting the 3 x 3 identity and zero matrices, respectively.
Thus, the 18 x 18 system mass matrix is given as

M = diag(M;, M3, M3)
and the 3 x 3 generalized inertia matrix I of the manipulator is
I=T'MT
whose entries are given by

Ip = tT Mty + t] Moty + t1, Msts,
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Iy = tg1M2t22 + tglM3t32 = Iy
I3 = t3;Matas = I

Iy = tL,Matag + tL, M3ta,

Iy = tHMstss = I3

I3 = tT,Mtss

Upon expansion, the foregoing expressions yield

11 4 0 3 00
Izzma2 4 7 0j+71(0 2 0
0 01 0 01

Now, the time-rate of change of I, I, is calculated as
I =T"MT + TTMT7 + TT(WM — MW)T

We proceed first to compute T. This time-derivative is nothing but the
18 x 3 matrix whose entries are the time-derivatives of the entries of T,
namely, t;;, as given in eq.(7.84), which is reproduced below for quick

reference:
bij = (w; x e-)w>J< :-»efl—e‘ X T
J 3 ij j X Yij
where r;; is given, in turn, by
Py =w; Xa;+...+ w1 Xa,_1 +w; X p;

Hence, we will need vectors w;, for ¢ = 1, 2, and 3. These are calculated
below:

w1 = 9181 = pk
wy = b1e1 + byes = p(j + k)
Wiy = 9.161 + 0.282 -+ é3e3 = P(i +j + k)

We have, therefore,

ti = iél xpli-lel xle = [el X (u?1 XP1)} =P [(1/2)£(i_j)]

) r &
tor = | . . .
7 &y x (a1 + py) +e1 x (A +P2)]

= le1 x (w1 xa(i + wa X Pz)] —P [(1/g)aj]
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ezz:[

é
€2 X Py + €3 X Py

per X ey }

- [(Pel X @) X py + €2 x [p(er + e2) X py)

=1f [—(1/2)a(il+j - k)]

t."31 =

é
| &1 % (a1 + a3+ p;) + e x (& +52+b3)]
[ ]
| e1 X (wy X a3 + wy X ag + w3 X pj)

0
| e1 X [pe1 X a1 + p(e1 + e2) X ag + p(e1 + ez + e3) X Ps]]

:p[—zj]

Now, let

(7.112)

- é
Lé2 X (a2 +p3) + ey X (ég +p3)]

per X ep ]
| (pe1 X e2) X (a2 + p3) + pe2 X [(e1 + €2) X (az + p3)]

—i ]
~(1/2)a(2i +j — k)

=3

_ ég :l_[ Wy X e3 :|
[ €3 X p3 +e3 X Py (w2 x e3) X p3 + €3 X (w3 X p3)

ple; +e) X e3 ]
| pl(e1 + e2) x e3] x p3 + pes x [(e1 + ez + €3) X p3]
[ plex —ey) ]
| p(e2 —~ e1) X p3 + p(es - p3)(e1 + ez + e3) — pg]

P a/Batiw)

P =T'MT

whose entries are displayed below:

p11 =t Myt + t, Matay + tT, Mtz
P12 = t1, Matas + t; Mstan

P13 = t3; Miss

Po1 = tay Moty + tT,Mais,

po2 = t1,Motas + t1, Matss
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Po3 = t5,Matas
pa1 = t3;Mats
P32 = t33;Msis)
P33 = t33Matss

Upon performing the foregoing operations, we end up with

—(/8a*m  (T/4)aPm  ~(1/2)atm —T
TTMT = p | —(1/2)a®m 0 1/4)a’>m+1 | =P
(1/2)a?m  (1/4)a?m — I 0

the second term of the above expression for I simply being PT. In order to
compute the third term, we need the products WM and MW. However, it
is apparent that the latter is the negative of the transpose of the former,
and so, all we need is one of the two terms. Furthermore, note that
since both matrices M and W are block-diagonal, their product is block-
diagonal as well, namely,

WM = diag(WlMl, W2M2, W3M3)

where for i = 1, 2, and 3,
Q 0
=8 o)

with O denoting the 3 x 3 zero matrix, while €2; is the cross-product matrix
of vector w;. Moreover,

WM, = [m,- 0]

O O

Therefore, W;M,; is skew-symmetric; as a consequence, WM is also skew-
symmetric, and the difference WM — MW vanishes. Hence, in this par-
ticular case, I reduces to

I=P+PT
That is,
) —-(1/2)a®>m  (5/4)a’*m -I
I=p| (5/4)a®>m 0 a’m+ 1

~I (1/2)a?m 0

Now, the term of Coriolis and centrifugal forces can be computed in two
ways, namely, (a) as (TTMT+TTWMT)8, and (b) by using the Newton-
Euler algorithm with G; =0,fori=1, 2, and 3. We proceed in these two
ways in order to verify the correctness of our results.

In proceeding with the first alternative, we already have the first term in
the foregoing parentheses; the second term is now computed. First, we
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note that
WiM,;t1; 0 0
WMT = | WoMsts; WaMastao 0
Wi3Msts; WiMstza WiMstas

with 0 defined as the 6-dimensional zero vector. The foregoing nontrivial
6-dimensional arrays are computed below:

_ [ O] Thk 0
WMty = | 0 O] —(a/2)( )] [ 0 ] [0]
_[192, O] Ik _ ;
WoMsto = | 0 O] —(a/2)(21+J ] [ 0 ]_pI[O]
B ‘10, ol j [ 195
WMoty = | 0 O] |-(a/2)Gd )] B [ 0
_[pIG+x) xj] _ [
= 0 =pl|
B -IQ3 O- [ k _ IQSk
W3Mgsts; = 0 0 _—ai] B [ 0 }
_ pI( +J+k)Xk = i-j
= | 0 =rll g
_[19; O] J T
Wi3Mjtzs = - o} Ojl L—(a,/2)( +2k)] |: 0 :l
_ pI(1+J+k)XJ] p][—_l;—k]
~ :IQS o i _ Iﬂ3i
Wi3Mjtss = e 0] [——(a/?)j] - [ 0 ]
_ [prG+i+xi] _ o [i-k
- 0 =rl%
where 0 now denotes the 3-dimensional zero vector. Therefore,
0 0 0
0 0 0
i —i 0
WMT =pl | 0 0
1—] —-i+k J_k
0 0 0

and hence,

1 -1 0

which turns out to be skew-symmetric. Notice, however, that this will not
always be the case. The reason why the above product turned out to be

0 1 -1
TTWMT =pI [-1 0 1
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skew-symmetric in this example is that the individual matrices W, and
M, commute, a consequence of the assumed inertial isotropy, which leads
to the isotropy of matrices I, for i = 1, 2, and 3. Now, we have

TTMT + TTWMT = pA
with A defined as
—(3/4)a’*m (7/Da*m+I —(1/2)a?m —2I
A=|-1/2)a?m-1T 0 (1/4)a*m + 21
B/a’m+1I  (1/4)a*m — 21 0
Hence, the term of Coriolis and centrifugal forces is
) . (1/2)a’*m - I
(TTMT + TTWMT)0 = p? | —(1/4)a®>m + I
a’m—1I
thereby completing the desired calculations.

Now, in order to verify the correctness of the above results, we will compute
the same term using the Newton-Euler algorithm. To this end, we set 6; = 0,
for i = 1, 2, and 3, in that algorithm, and calculate the desired expression as
the torque required to produce the joint rates given above.

Since we have already calculated the angular velocities, we will skip these
calculations here and limit ourselves to the mass-center velocities, angular ac-
celerations, and mass-center accelerations. We thus have

¢ =wy x p; =pk x (wéa) i-j)= —%ap(i—kj)

¢y =¢ +wy X (a1 — py) + w2 X py

= papl=i == kox (1+)+ (1) x (4]~ k)] = —5ap(3i+j+1)
€3 =€+ wa X (a3 — py) + w3 X pg

1

=—-2—ap[3i+j+k+(j+k) X (i+k)—(i+j+k) x (2i+k)]
1

= ~§ap(3i+j + 2k)

Now, the acceleration calculations are implemented recursively, which yields

(bl =51e1 =0
W1 + wq X baes =p’k x j = —p?i

€.
)
I

w3 = wsg + wa X 9383 = —p2i+:02(.]+k) Xi= —pz(i—j-i-k)

w . 1, ., . 1 . .
& =wy x py +wy x (W1 X py) = ap’k x [k x 5(—1 +_])] = 504)2(1—.])
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¢y = ¢1 +wy X (al—p1)+w1 x[w1 x(al—pl)]+w2xp2
1 .. 1 . .
+wz X (w2 x py) = 5ap*(A — ) + 0+ 5ap”(i +J)
1 1 . . 1 .
—iapQ(j + 2k) + §ap2(—21 —3j+3k) = Eapz(—4.] + k)
€3 =& +wa X (a2 — py) +wa X [wa X (a2 — po)] + W3 X pg

1 . 1 5, 1 -
=+ws X (w3 X p3) = —2—ap2(-—4,1 + k) — §ap2,] + §ap2(21 —-j+k)

1 .. 1 c | s .
+ §ap2(1 —j—2k)+ —2—ap2(—31 + 3j) = —2ap%j
With the foregoing values, we can now implement the inward Newton-Euler

recursions, namely,
ff = m3és — f = —m(2ap?j) — 0 = —2amp?j
n:}; =T3ws + w3 xlgwg—n+p3 )(fé3
= —Ip*(i—j+k)+0—0—a’mp?(~i+ 2k)
= —Ip*(i—j+k) + a®mp®(i — 2k)

P . p_ 1 20 A1 9. 1 2 _qs
f, =meéa+1f; = Samp (—4j+ k) —amp’j = Famp (—6j + k)
1'15 =12w2+w2 XIQW2+H§+(32—p2) Xf3P+p2 Xf2P

1
=—pli+0-Ip?(i—-j+k)+ §a2mp2(i — 2k) + a®*mp?i
1
+ ZanpQ(—4i —j—6k)
=-Ip?(2i—j+Xk) + %azmpz(Zi —j —10k)

1 1
ff =m& + £ = Eampz(i -J)+ -2—amp2(—6j + k)

1
= Eame(i —-7j+k)

nd =L@ +wy x Liws +0f + (a3 — p)) x £ + p; x £F

. 1 .

=0+0-p?I2i—j+k)+ Zazmp2(21 —j—10Kk)

1
—le-a?‘mpz(i —j—6k) + Zazmp2(i +j — 6k)
2 ey . 1 2 2 /e .
=—Ip*(2i—j +k)+Za mp” (21 + j + 2k)
and hence,

3 =10} -e3 = —Ip? + a?mp?
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1
Ty = nf -@g = Ip2 - Zanp2
1
n=nf e =—Ip*+ 5(12mp2

thereby completing the calculation of the term containing Coriolis and centrifu-
gal forces, i.e.,
—Ip? + a®>mp?
C(0,0)0 = | Ip* — (1/4)a’>mp?
—Ip? + (1/2)a?mp?

As the reader can verify, the natural orthogonal complement and the New-
ton-Euler algorithm produce the same result. In the process, the reader may
have realized that when performing calculations by hand, the Newton-Euler
algorithm is more prone to errors than the natural orthogonal complement,
which is more systematic, for it is based on matrix-times-vector multiplications.

7.6.2 Algorithm Complexity

The complexity of this algorithm is analyzed with regard to the three items
involved, namely, (¢) the evaluation of L, (i¢) the solution of systems (7.105a &
b), and (ii¢) the computation of 7.

The evaluation of L involves, in turn, the three following steps: (a) the
computation of P; (b) the computation of I; and (c) the Cholesky decomposition
of I into the product LTL.

(i.a) In the computation of P, it is recalled that H;, a;, and p,, and conse-
quently, §; = a; — p;, are constant in F; 1, which is the frame fixed to the
ith link. Moreover, at each step of the algorithm, both revolute and pris-
matic pairs are considered. If the jth joint is a revolute, then the logical
variable R is true; if this joint is prismatic, then R is false. Additionally,
it is recalled that e;41, in F;-coordinates, is simply the last column of Q;.
The columnwise evaluation of P, with each p;; array in F;;-coordinates,
is described in Algorithm 7.6.1. Note that in this algorithm, r;; is cal-
culated recursively from r;_y ;. To do this, we use the relation between
these two vectors, as displayed in Fig. 7.8.

(i.b) Now we go on to the computation of I, as described in Algorithm 7.6.2. In
that algorithm, the subscripted brackets indicate that the vectors inside
these brackets are represented in Fj4.1 coordinates.

(i.c) Because the Cholesky decomposition of a positive-definite matrix is a stan-
dard item, it is not discussed here. This step completes the computation
of L.

(i) The solution of systems (7.105a & 7.105b) is a standard issue as well, and
hence, needs no further discussion.
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Figure 7.8: Recursive calculation of vectors ry;

(iii) The term 7 is computed using the recursive Newton-Euler formulation,
as discussed in Section 7.4. To do this, we calculate 7 by setting @ = 0 in
that procedure, which introduces a slight simplification of the complexity
of the inverse-dynamics algorithm.

Below we determine the computational complexity of each of the foregoing
steps.

(i.a) This step includes Algorithm 7.6.1, which involves two nested do-loops.
The first statement of the outermost loop involves no floating-point oper-
ations; the second statement involves (a) one multiplication of a matrix
by a vector, (b) one cross product, and (c¢) one multiplication of a scalar
by a vector. Of the last three items, (a) is done off-line, for the matrix
and the vector factors are both constant in F;,-coordinates, and so, this
operation is not counted. Moreover, item (b) is nothing but the cross
product of vector [e;];41 = [0, 0, 1]T by vector r;;. A similar oper-
ation was already discussed in connection with Algorithm 4.1 and was
found to involve zero floating-point operations, for the result is, simply,
[e; X vjjlj+1 = [~y, 7, 0]T, with z and y denoting the X;41 and Yj41
components of r;;. Hence, item (b) requires no floating-point operations,
while item (c) requires 2n multiplications and zero additions.

The innermost do-loop, as pertaining to revolute manipulators, involves
two coordinate transformations between two consecutive coordinate frames,
from Fi- to Fipi1-coordinates, plus two vector sums, which consumes
16(n —4) multiplications and 14(n — ) additions; this loop also consumes
one matrix-times-vector multiplication, one cross product and one scalar-
times-vector multiplication, which requires 18(n — ) multiplications and
12(n — %) additions. Thus, the total numbers of operations required by
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Algorithm 7.6.1:

For j=1to n step 1 do
rjj 1ol

Pjj

For i=j+1ton step 1 do
e; « Qfle;l;

if R then

rij + Qf[ricyy+0iali+ 0 )i

pz‘j(_[

else

Pij<—[

endif
enddo
enddo

Nje; ]
nje; X rjj; 1

Niej
nie; X rij i+l

. }
n;e; i+l

this step, for an n-revolute manipulator, are M;, multiplications and A;,

additions, as given below:

n
Mio =2n+ Y _34(n—1i) =17n* — 15n (7.113a)
=1
Aia =Y 26(n —1i) = 13n% — 13n (7.113b)
=1

the presence of prismatic pairs reducing the above figures.

(i.b) This step, summarized in Algorithm 7.6.2, is also composed of two do-
loops, each containing the inner product of two 6-dimensional arrays, and
hence, requires six multiplications and five additions. Moreover, in the
outermost do-loop, this operation is performed n times, whereas in the

innermost loop, Y_1_, (n — i) times, i.e., n(n — 1)/2 times. Thus, the step
requires M, multiplications and A;, additions, as given below:

My =3n%+3n, Ay = 52yl (7.114)

2 2
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Algorithm 7.6.2:
For j=1+to n step 1 do
L + Yhei[pEpki e
For i=j+1ton step 1 do

Lj « Iji « Y poi[prprjles
enddo
enddo

(i-¢)

(i)

(iii)

This step performs the Cholesky decomposition of an n X n symmetric and
positive-definite matrix, a standard operation that requires M;, multipli-
cations and A4;, additions (Dahlquist and Bjorck, 1974), namely,
1 1 1 1 1 1

M;. = g’ns + 57‘&2 -+ gn, A= gns -+ §n2 + gn (7.115)
In this step, the two triangular systems of equations, eqs.(7.105a & b), are
solved first for x and then for 6. The numbers of operations it takes to
solve each of the two systems, as derived by Dahlquist and Bjorck (1974),
are repeated below for quick reference; these are labelled M;; and A,

respectively, i.e.,
Mﬁ = ’I’Lz, Az’z’ = ’)’L2 —-Nn (7.116)

In this step, T is computed from inverse dynamics, with wl = 0 and
6 = 0. If this calculation is done with the Newton-Euler formulation,
we then have the computational costs given in eq.(7.43), and reproduced

below for quick reference:

Miii =137n — 22, Ai“ =110n—-14 (7.117)

Because of the simplifications introduced by setting the joint accelerations equal
to zero, the foregoing figures are, in fact, slightly lower than those required by
the general recursive Newton-Euler algorithm.

Thus, the total numbers of multiplications and additions required for the
forward dynamics of an n-revolute, serial manipulator are

43 , 376 593

1 1
Mp=_n®+—n’+ S22, Ar= 6n3 +17n® + et (7.118)

6 2

In particular, for a six-revolute manipulator, one obtains

My =1,540, Aj=1,227 (7.119)
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We have reduced the foregoing figures even further by introducing a modified
Denavit-Hartenberg labeling of coordinate frames and very careful management
of the computations involved. Indeed, in (Angeles and Ma, 1988), the complex-
ity of the algorithm for a six-revolute manipulator of arbitrary architecture is
reduced to 1,353 multiplications and 1,165 additions. Since the details of this
simplification lie beyond the scope of the book, we do not elaborate on this item
here.

7.6.3 Simulation

The purpose of the algorithm introduced above is to enable us to predict the
behavior of a given manipulator under given initial conditions, applied torques,
and applied loads. The ability of predicting this behavior is important for several
reasons: for example, in design, we want to know whether with a given selection
of motors, the manipulator will be able to perform a certain typical task in
a given time frame; in devising feedback control schemes, where stability is a
major concern, the control engineer cannot risk a valuable piece of equipment by
exposing it to untested control strategies. Hence, a facility capable of predicting
the behavior of a robotic manipulator, or of a system at large, for that matter,
becomes imperative.

The procedure whereby the motion of the manipulator is determined from
initial conditions and applied torques and loads is known as simulation. Since we
start with a second-order n-dimensional system of ODE in the joint variables
of the manipulator, we have to integrate this system in order to determine
the time-histories of all joint variables, which are grouped in vector 8. With
current software available, this task has become routine work, the user being
freed from the quite demanding task of writing code for integrating systems of
ODE. Below we discuss a few issues pertaining to the implementation of the
simulation-related algorithms available in commercial software packages.

As a rule, simulation code requires that the user supply a state-variable
model of the form of eq.(7.45), with the state-variable vector, or state-vector for
brevity, x, and the input or control vector u defined as

x= [g] = L‘Z] u(t) = (t) (7.120)

With the above definitions, then we can write the state-variable equations, or
state equations for brevity, in the form of eq.(7.45), with f(x, ) given by

f(x, 7) = (1.121)

P

[—1(9)‘1[0(9,¢)¢ —8(0,9) —v(0)] + 1(6) "7 (t)
thereby obtaining a system of 2n first-order ODE in the state-variable vector x
defined above. Various methods are available to solve the ensuing initial-value
problem, all of them being based on a discretization of the time variable. That
is, if the behavior of the system is desired in the interval tg < t < tp, then the
software implementing these methods provides approzimations {yy }¥ to the
state-variable vector at a discrete set of instants, { ¢ }{', with ty = tp.
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The variety of methods available to solve the underlying initial-value problem
can be classified into two main categories, explicit methods and implicit methods.
The former provide yiy1 explicitly in terms of previously computed values. On
the contrary, implicit methods provide yg4+1 in terms of previously computed
values Yk, Yk—1, ..., €tc., and yg41 itself. For example, in the simplest of
implicit methods, namely, the backward Fuler method, we can approximate the
integral of f in the interval ¢ < t < 541 by resorting to the trapezoidal rule
(Kahaner et al., 1989), which leads to the expression

Vi1 = Yi + Aef (e, Yig1) (7.122)

In eq.(7.122), hy, is the current time-step tj41 — tx and £(txy1,¥r41) can be
an arbitrary function of y.y1. If this function is nonlinear in the said variable,
then, a direct—as opposed to iterative—computation of y,41 is very unlikely.
Hence, most likely an iterative scheme must be implemented at every integration
stage of an implicit method. While this feature might render implicit schemes
unattractive, they offer interesting advantages. Indeed, the iterative procedure
mentioned above requires a tolerance to decide when and whether the procedure
has converged. The convergence criterion imposed thus brings about a self-
correcting effect that helps keep the unavoidable truncation error under control.
This error is incurred when approximating both the time derivative X and the
integral of f by floating-point operations.

Current software provides routines for both implicit and explicit methods,
the user having to decide which method to invoke. Of the explicit methods
in use, by far the most common ones are the Runge-Kutta methods. Of these,
there are several versions, depending on the number of evaluations of the func-
tion f(¢;,y;), for various values of ¢, that they require. A two-stage Runge-
Kutta method, for example, requires two function evaluations, while a four-
stage Runge-Kutta method requires four. The self-correcting feature of implicit
methods, not present in Runge-Kutta methods—to be sure, implicit Runge-
Kutta methods also exist (Gear, 1971), but these are less common than their
explicit counterparts—is compensated for by a clever strategy that consists in
computing y41 using two Runge-Kutta schemes of different numbers of stages.
What is at stake here is the magnitude of the local error in computing yi41,
under the assumption that yy is error-free. Here, the magnitude of the error is
of order h?, where p is the order of the method in use. In Runge-Kutta meth-
ods, the order of the method is identical to its number of stages. In general, a
method is said to be of order p if it is capable of computing ezactly the integral
of an ordinary differential equation, provided that the solution is known to be
a pth-degree polynomial. Now, upon computing y;,1 using two Runge-Kutta
schemes with N and N + 1 stages, we can compare the two computed values
reported by each method, namely, y{c\;1 and ykN ++11. If a norm of the difference
of these two values is smaller than a user-prescribed tolerance, then the step
size in use is acceptable. If not, then the step size is halved, and the process
is repeated until the foregoing norm is within the said tolerance. The most
common Runge-Kutta methods are those combining two and three stages and
those combining four and five.
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A drawback of Runge-Kutta methods is their inability to deal with what are
known as stiff systems, first identified by Gear (1971). As defined by Shampine
and Gear (1979), a system of ordinary differential equations is said to be stiff if
it is not unstable and its linear part—i.e., the linear part of the series expansion
of f, evaluated at the current instant—comprises a coefficient matrix that has
an eigenvalue with a negative real part whose absolute value is much greater
than that of the other eigenvalues. In other words, stiff systems of ODE are
stable systems with very different time scales. Thus, stiff systems are not inher-
ently difficult to integrate, but they require a special treatment. Gear’s method,
which is implicit, provides exactly the means to handle stiff systems. However,
methods like Runge-Kutta’s, with excellent performance for nonstiff systems,
perform rather poorly for stiff systems, and the other way around. The math-
ematical models that arise in robotic mechanical systems are likely to be stiff
because of the various orders of magnitude of the physical parameters involved.
For example, robotic manipulators are provided, usually, with links close to the
base that are heavy and with links far from the base that are light. As a conse-
quence, when simulating robotic mechanical systems, a provision must be made
for numerical stiffness.

Commercial software for scientific computations offers Runge-Kutta meth-
ods of various orders, with combinations thereof. For example, IMSL offers
excellent FORTRAN routines, like IVPRK, for the implementation of Runge-
Kutta methods, while Matlab’s Simulink toolbox offers the C functions rk23
and rk45 for the implementation of second-and-third and fourth-and-fifth-order
Runge-Kutta methods. With regard to stiff systems, IMSL offers a subrou-
tine, IVPAG, implementing both Adams’s and Gear’s methods, while Simulink
offers the adams and gear functions for the implementation of either of these.
Since Matlab is written in C, communication between Matlab and FORTRAN
programs is not as direct as when using IMSL, which may be disappointing to
FORTRAN users. Details on linking FORTRAN code with Matlab and other
related issues are discussed in the pertinent literature (Etter, 1997). Moreover,
the FORTRAN SDRIV2 subroutine (Kahaner, Moler, and Nash, 1989) comprises
features that allow it to handle both stiff and nonstiff systems.

7.7 Incorporation of Gravity Into the Dynamics
Equations

Manipulators subjected to gravity fields have been discussed in Section 7.4 in
connection with the Newton-Euler algorithm and with Kane’s equations. As
found in that section, gravitational forces can be incorporated into the under-
lying models without introducing any major modifications that would increase
the computational load if the method of Luh et al. (1980) is adopted. Within
this approach, gravitational forces are taken into account by defining the ac-
celeration of the mass center of the Oth link, the base link, as equal to —g,
the negative of the gravity-acceleration vector. The effect of this approach is to
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propagate the gravity effect into all the links composing the manipulator. Thus,
the kinematics algorithm of Section 7.4 need not be modified in order to include
gravity forces, for all that is needed is to declare

€1 « [—-gh (7.123)

If inverse dynamics is computed with the natural orthogonal complement, then
the twist-rate of the first link will have to be modified by adding a nonhomo-
geneous term to it, thereby accounting for the gravity-acceleration terms. That
is,

. .. . 0

t1 Oty + 61t + g (7.124)

Otherwise, the foregoing algorithms require no modifications. Furthermore,
with regard to simulation, it is pointed out that the T term defined in eq.(7.104),
and appearing in the right-hand side of eq.(7.105a), is computed from inverse
dynamics with zero frictional forces and zero joint accelerations.

7.8 The Modeling of Dissipative Forces

Broadly speaking, frictional forces are of two basic types, namely, (i) viscous
forces and (i4) Coulomb, or dry-friction, forces. The latter occur when contact
between two solids takes place directly, the former when contact between the
solids takes place via a viscous fluid, e.g., a lubricant. In the analysis of viscous
fluids, a basic assumption is that the relative velocity between the fluid and the
solid vanishes at the fluid-solid interface, i.e., at the solid boundary confining the
fluid. Hence, a velocity gradient appears within the fluid, which is responsible
for the power dissipation inside it. In fact, not all the velocity gradient within
the fluid, but only its symmetric part, is responsible for power dissipation; the
skew-symmetric part of the velocity gradient accounts for a rigid-body rotation
of a small fluid element. Thus, if a velocity field v(r, ) is defined within a region
R occupied by a viscous fluid, for a point of the fluid of position vector r at a
time ¢, then, the velocity gradient grad(v) = 8v/dr, can be decomposed as

grad(v) =D+ W (7.125)

where D and W are the symmetric and the skew-symmetric parts of the velocity
gradient, i.e.,

D= %[grad(v) + grad” (v) , W= %[grad(v) —grad®(v)] (7.126)

The kinematic interpretation of D and W is given below: The former ac-
counts for a distorsion of an infinitesimally small spherical element of fluid into
a three-axis ellipsoid, the ratios of the time rates of change of the lengths of the
three axes being identical to the ratios of the real eigenvalues of D; the latter
accounts for the angular velocity of the ellipsoid as a rigid-body. Clearly, both
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D and W change from point to point within the fluid and also from time to
time, i.e.,

D =D(r,t), W =W(r,i) (7.127)

Since the skew-symmetric matrix W accounts only for the rotation of a
differential element of fluid as a rigid body, it cannot be responsible for any
energy dissipation, and hence, the only part that is responsible for this is D.
In fact, for a linearly viscous, incompressible fluid of viscosity coeflicient u, the
power dissipated within R is given by

P = / ptr(D*)dR (7.128)

Now, if the motion of the lubricant separating the two cylindrical surfaces
of a revolute pair is modeled as a purely tangential velocity field (Currie, 1993),
which assumes that the two cylinders remain concentric, then the foregoing
expression for II” leads to the dissipation function

A= %,30'2 (7.129)

where 6 is the relative angular speed between the two cylinders and the coeffi-

cient § is a function of the lubricant viscosity and the geometry of the kinematic
pair at hand. If the kinematic pair under study is prismatic, then we can model
the motion of the lubricant between the two prismatic surfaces as a Couette
flow between a pair of parallel surfaces of the sides of the prism. Under these
conditions, then, the associated dissipation function A takes on the same form
of that given for a revolute pair in eq.(7.129), in which the sole difference is
that @ changes to b, the time rate of change of the associated joint variable. Of
course, b is the relative speed between the two prismatic surfaces. Thus in any
event, the dissipation function of the ith joint due to linearly viscous effects can
be written as

A= —;—M? (7.130)

where 6; changes to b; if the ith pair is prismatic. The dissipation function thus
arising then reduces to

A=A = -;-9T139 (7.131)
1

where the constant n x n matrix B is given by

B= diag(ﬂl, ﬂg yeeey ,Bn) (7132)

and hence, the generalized force QV associated with linearly viscous effects is
linear in the vector of joint rates, 0, i.e.,

OA

0V =-">-=-B6 (7.133)
o0
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and so, A = —(1/2)IIP, which was introduced in eqs.(7.11) and (7.12a & b).
Coulomb, or dry friction, is much more difficult to model. If §¢ denotes
either the dissipative torque produced by Coulomb friction at a revolute or
the dissipative force produced by Coulomb friction at a prismatic joint, and 6;
the associated joint rate, then, the simplest model for the resulting generalized
Coulomb-friction force is )
8¢ = —7Fsgn(6;) (7.134)

where sgn(-) denotes the signum function, which is defined as +1 or —1, de-
pending on whether its argument is positive or negative, and 7 is a positive
constant representing a torque for revolute joints or a force for prismatic joints.
The numerical value of this constant is to be determined experimentally. The
foregoing model leads to a simple expression for the associated dissipation func-
tion, namely,

AS = 7E16;] (7.135)

The Coulomb dissipation function for the overall manipulator is, then,
n -
AC =771, (7.136)
1

The foregoing simplified model of Coulomb friction forces is applicable when
the relative speed between the two surfaces in contact is high. However, at low
relative speed, that model becomes inaccurate. In robotics applications, where
typical end-effector maximum speeds are of the order of 1 m/s, relative speeds
are obviously low, and hence, a more accurate model should be introduced. Such
a model should account for the empirical observation that Coulomb frictional
forces are higher at low relative speeds and become constant at very high relative
speeds. A model taking this fact into account has the form

8¢ = = (0 + ese™ "% )sgn(6) (7.137)

where ;, and ¢; are constants associated with the ith joint and are to be deter-
mined experimentally. The foregoing expression readily leads to the dissipation
function associated with the same joint, namely,

AF =@l + 1 - 1) (7.138)

and hence, the Coulomb dissipation function of the overall manipulator becomes

20 =3 [i€01 + S et (7139
1 T

Dissipation functions are very useful. On the one hand, they allow us to
obtain associated generalized frictional forces when these are difficult, if not
impossible, to express in formula form. On the other hand, since dissipation
functions represent nonrecoverable forms of power, their integrals over time
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yield the dissipated energy. Moreover, the energy dissipated into unrecover-
able heat can be estimated from an energy balance, and hence, the parameters
associated with that dissipation function can be estimated with suitable identi-
fication techniques, once a suitable model for a dissipation function is available.
Furthermore, the said parameters appear in the generalized frictional forces as
well. For this reason, knowing these parameters is essential for the modeling of
the corresponding generalized frictional forces.

7.9 Exercises

7.1 Show that:

() the 6n-dimensional manipulator twist lies in the nullspace of the 6n x
6n manipulator angular velocity matrix W;
(#4) the time-derivative of the 6n X 6n manipulator mass matrix M is
given by
M=WM -~ MW
(i)

dp :
— = Mt + WMt
dt +

thereby verifying eq.(7.15).

7.2 In order to gain insight into the meaning of vector v, as defined in Exam-
ple 7.3.1, we define a similar vector n as
_oa),
06 0
Compute 7 for that example and compare the result with ~.

7.3 The decoupled robot of Fig. 4.19 is to undergo a maneuver, at the pos-
ture displayed in that figure, that involves the velocity and acceleration
specifications given below, in base coordinates:

.|

1 0
¢=1{0| m/s, w=|1]| rad/s,
| 1| 0
[0] 1
é¢= (1| m/s®, @w=|0] rad/s
| 0] 1

Compute the joint torques required to drive the robot through the desired
maneuver, if the robot is known to have the inertial parameters given
below:

my = 10.521, mq = 15.781, ms = 8.767,

myg = 1.052, my = 1.052, mg = 0.351
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7.4

7.5

7.6

0 0.140 0
p=|-0054|, p,=| 0 |, ps=1-0.197
0 0 0

0 0 0
Py = 0 , ps=|—0.007|, pg= 0
—0.057 0 -0.019

I, = diag[1.6120 0.5091 1.6120]
I, = diag[0.4898 8.0783 8.2672]
I = diag[3.3768 0.3009 3.3768]
I, = diag[0.1810 0.1810 0.1273]
I; = diag[0.0735 0.0735 0.1273]
Is = diag[0.0071 0.0071 0.0141]

where m;, p;, and I; are given in units of kg, m and kg m?, respectively,
with the position vectors of the mass centers and the moment-of-inertia
matrices given in link-fixed coordinates. Note: Assume that Z, is perpen-
dicular to Zg and Zg, with O located at the OP of the FE.

Derive homogeneous, linear constraint equations on the twists of the pairs
of coupled bodies appearing in Fig. 7.9, namely,

(a) two rigid pulleys coupled by an inextensible belt, under no slip;

(b) the bevel pinion-and-gear train with axes intersecting at an arbitrary
angle «;

{c¢) the cam-and-follower mechanism whose cam disk is an eccentric cir-
cular disk.

Notice that the constraint equations sought should have the form:
At +Bty, =0

with t; and to denoting the twists of bodies 1 and 2, respectively.

Use the expressions derived in Example 7.6.1 with the aid of the natu-
ral orthogonal complement, as pertaining to the planar manipulator of
Fig. 7.1, to obtain an expression for the time-derivative of the inertia ma-
trix of this manipulator. Compare the expression thus obtained with that
derived in Example 7.3.1, and verify that the difference I — 2C is skew-
symmetric—see Exercise 12.2—where C is the matrix coefficient of the
Coriolis and centrifugal terms.

A three-revolute spherical wrist with an orthogonal architecture, i.e., with
neighboring joint axes at right angles, is shown in Fig. 7.10. Assume that
the moments of inertia of its three links with respect to O, the point of
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Figure 7.9: Three different pairs of coupled bodies

concurrency of the three axes, are given by constant diagonal matrices, in
link-fixed coordinates, as

I4 = diag(Jl, J2, J3)

15 = diag(Kl, KQ, K3)

IG = diag(Ll,Lz,La)

while the potential energy of the wrist is

V = —mggacosfs

Moreover, the motors produce torques 74, 75, and 74, respectively, whereas
the power losses can be accounted for via a dissipation function of the

form
(1 2, .C|)
A= 24: <—bi9¢ + 7 |91'|)

where b; and TiC , for ¢ = 4,5,6, are constants.

(a) Derive an expression for the matrix of generalized inertia of the wrist.
(b) Derive an expression for the term of Coriolis and centrifugal forces.

(c) Derive the dynamical model of the wrist. Hint: The kinetic energy T
of a rigid body rotating about a fixed point O with angular velocity w
can be written as T = %wTIow, where 1o is the moment-of-inertia
matriz of the body with respect to O.

7.7 Shown in Fig. 7.11 is a two-revolute pointing manipulator. The centroidal
inertia matrices of the links are denoted by I; and I5. These are given, in
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7.8

Figure 7.10: A three-revolute spherical wrist

link-fixed coordinates, by:

Iy Iip It Juu 2 Jiz
Li=|Lin I |, Ih=|Jia Ja Ja
Iis Iz Isz Jiz  Jaz  Jag

Moreover, the mass centers of the links are denoted by €1 and Cs, respec-
tively, and are shown in the same figure, the masses being denoted by m;
and ma.

(a) Determine the kinetic energy of the manipulator as a quadratic func-
tion of 8; and &-.

(b) Determine the 2 x 2 matrix of generalized inertia.

(c) Find an expression for the time-rate of change of the matrix of gen-
eralized inertia by straightforward differentiation of the expression
found in item (b).

(d) Repeat item (c), but now by differentiation of the three factors of I,
as given in
I=T"MT

The twist t; of the ith link of an n-dof serial manipulator can be expressed
as ‘
t;=T;0

where T; is a 6 x n link-twist-shaping matrix and @ is the n-dimensional
vector of actuated joint rates. Moreover, let M; and W; be the 6 x 6
matrices defined in Section 7.3. Show that if the link is constrained to
undergo planar motion, then the product T7 W;M;T; vanishes.



320

7.9

7.10

7.11

7.12

7. Dynamics of Serial Robotic Manipulators

Xy

Figure 7.11: A two-revolute pointing manipulator

Devise a recursive algorithm to compute the joint torques required to
balance a wrench w acting at the EE of a six-revolute manipulator of
arbitrary architecture. Then, derive the number of floating-point opera-
tions (multiplications and additions) required to compute these torques,
and compare your result with the number of floating point operations re-
quired to compute the same by matrix-times-vector multiplications, using
the transpose Jacobian.

Establish the computational cost incurred in computing the term of Cori-
olis and centrifugal forces of an n-revolute serial manipulator, when the
Newton-Euler algorithm is used for this purpose.

Shown in Fig. 7.12 is an RRP manipulator, whose DH parameters are
displayed in Table 7.5. The masses of its three moving links are denoted
by m;y, ms, and m3, and the mass center of each of links 1 and 2 coincides
with O;, while the mass center of link 3 is located at P. Moreover, the
centroidal moments of inertia of these links are, in link-fixed coordinates,

[Li]a=A1, [L]3=B1, [L]s=C1
where 1 denotes the 3 x 3 identity matrix.

(a) Derive the Euler-Lagrange equations of the manipulator under the
assumption that gravity acts in the direction of X;.

(b) Find the generalized inertia matrix of the manipulator.

A link is said to be inertially isotropic if its three principal moments of
inertia are identical.
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Figure 7.12: An RRP spatial manipulator

Table 7.5: DH parameters of the RRP manipulator

1 a; bi (871
1 0 0 90°
2 0 0 90°
3 0 b3 0°

(a) Show that any direction is a principal axis of inertia of an inertially
isotropic link.

(b) Explore the advantages of a manipulator with inertially isotropic
links with regard to its real-time control, i.e., find the savings in
floating-point operations required to compute the recursive Newton-
Euler algorithm of such a manipulator.

7.13 Devise an algorithm similar to Algorithm 7.1, but applicable to planar
manipulators, and determine the computational costs involved in its im-
plementation.

7.14 Write a piece of code to evaluate numerically the inertia matrix of an n-

axis manipulator and test it with the manipulator of Example 7.6.1. For

this purpose, assume that I = ma?2.



Chapter 8

Special Topics in
Rigid-Body Kinematics

8.1 Introduction

The motivation for this chapter is twofold. On the one hand, the determi-
nation of the angular velocity and angular acceleration of a rigid body from
point-velocity measurements is a fundamental problem in kinematics. On the
other hand, the solution of this problem is becoming increasingly relevant in
the kinematics of parallel manipulators, to be studied in Chapter 10. Moreover,
the estimation of the attitude of a rigid body from knowledge of the Cartesian
coordinates of some of its points is sometimes accomplished by time-integration
of the velocity data. Likewise, the use of accelerometers in the area of motion
control readily leads to estimates of the acceleration of a sample of points of a
rigid body, which can be used to estimate the angular acceleration of the body,
and hence, to better control its motion.

In order to keep the discussion at the level of fundamentals, we assume
throughout this chapter that the information available on point velocity and
point acceleration is error-free, a rather daring assumption, but useful for un-
derstanding the underlying concepts at this level. Once the fundamentals are
well understood, devising algorithms that yield the best estimates of angular
velocity and acceleration in the presence of noisy measurements becomes an
easier task. For the sake of conciseness, the problem of motion estimation will
not be discussed in this book.
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8.2 Computation of Angular Velocity from Point-
Velocity Data

The twist of a rigid body, as introduced in eq.(3.72), defines completely the
velocity field of a rigid body under arbitrary motion. Notice that the twist
involves two vector quantities, the angular velocity and the velocity of a point
of the rigid body. Since we are assuming that point-velocity data are available,
the only item to be computed is the angular velocity of the body under study,
which is the subject of this section. Once the angular velocity is known and the
velocities of a set of body points are available, other relevant motion parameters,
such as the location of the ISA—see Section 3.4—-can be readily determined.

If the twist of a rigid body is known, the computation of the velocity of
an arbitrary point of the body, of a given position vector, is straightforward.
However, the inverse problem, namely, the computation of the twist of the
motion under study given the velocities of a set of points of known position
vectors, is a more difficult task. A solution to this problem is now outlined.

First and foremost, we acknowledge that the velocities of a minimum of three
noncollinear points are needed in order to determine the angular velocity of the
rigid body under study. Indeed, if the velocity of a single body point is known,
we have no information on the angular motion of the body; if the velocities of
two points are known, we can calculate two components of the angular-velocity
vector of the body, namely, those that are orthogonal to the line joining the
two given points, thereby leaving one component indeterminate, the one along
that line. Therefore, in order to know the angular velocity of a rigid body in
motion, we need at least the velocities of three noncollinear points of the body—
obviously, knowing only the velocities of any number of points along one line
yields no more information than knowing only the velocities of two points along
that line. We thus assume henceforth that we have three noncollinear points
and that we know perfectly their velocities.

Let the three noncollinear points of the body under study be denoted by
{P;}} and let {p; }3 be their corresponding position vectors. The centroid C
of the foregoing set has a position vector ¢ that is the mean value of the three
given position vectors, namely,

GO =

C

3
> pi (8.1)

Likewise, if the velocities of the three points are denoted by p;, and that of their
centroid by ¢, one has

¢

W =

3

> b (8.2)
1

From eq.(3.49), the velocity of the three given points can be expressed as

pi=¢+Qp;—c¢), i=1,2,3 (8.3a)
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or
f)’i —&= Q(pz - C)a t=1,2,3 (83b)

Now, we define a 3 x 3 matrix P as
P=[pi—c p2—c p3—c] (8.4)
Upon differentiation of both sides of eq.(8.4) with respect to time, one has
P=[p1—¢ p2—¢ p3—¢] (8.5)

It is noteworthy that P and P are immautable under a pure translation of the

coordinate frame of reference. However, under a pure rotation of the frame,

given by a proper orthogonal matrix Q, both P and P transform as QP and

QP, respectively. As a concequence, P and P are not frame invariant.
Further, egs.(8.3b) can be written in matrix form as

P=QP (8.6)

from which we want to solve for €, or equivalently, for w. This cannot be
done by simply multiplying by the inverse of P, because the latter is a singu-
lar matrix. In fact, as the reader can readily verify, any vector having three
identical components lies in the nullspace of P, thereby showing that P is sin-
gular, its nullspace being spanned by that vector. Furthermore, notice that from
eq.(8.3b), it is apparent that

Pi—¢)Tw=0, i=1,2,3 (8.72)

Upon assembling all three scalar equations above in one single vector equation,
we obtain

PTw=0 (8.7b)

a result that is summarized below:

Theorem 8.2.1 The angular-velocity vector lies in the nullspace of matriz PT,
with P defined in eq.(8.5).

In order to find the desired expression for w from the above equation, we

recall Theorem A.1, which is proven in Appendix A: Let S be a skew-symmetric
3 x 3 matrix and A be an arbitrary 3 x 3 matrix. Then,

1
vect(SA) = 3 [tr(A)1 — A] vect(S) (8.8)
Upon application of the foregoing result, eq.(8.6) leads to

Dw = vect(P) (8.9)

where D is defined below and vect(2) is nothing but w:
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= %[tr(P)l _ P (8.10)

Thus, eq.(8.9) can be solved for w as long as D is invertible. It is to be expected
that, if the three points are collinear, then D is invertible, but, given that P is
not frame-invariant, neither is tr(P). Hence, it is not apparent from eq.(8.10)
that D is singular when the three given points are colinear. We will discuss this
singularity presently.

Now, if tr(P) vanishes, D becomes just one-half the negative of P, which, as
we saw above, is singular. Moreover, if the three given points are noncollinear
and we assume that the trace of P does not vanish, then the inverse of D can
be proven to be

D! =al - 3P? (8.11)
where coeflicients o and § are given below:
2 4
= = 8.12
« tr(P)’ P tr(P)[tr(P2) — tr*(P)] (8.12)

From expressions (8.12) it is apparent that D fails to be invertible not only
when tr(P) vanishes, but also when the term in brackets in the denominator of
B does. In Exercise 8.3, the reader is asked to prove that the foregoing term
vanishes whenever the three points are collinear.

From the foregoing discussion, it is apparent that given the velocities and the
position vectors of three noncollinear points of a rigid body, the angular velocity
of the body can always be determined. However, the data, i.e., the velocities of
the three given points, cannot be arbitrary, for they must conform to eq.(8.6)
or, equivalently, to Theorem 8.2.1. Equation (8.6) states that the columns of
matrix P must lie in the range of €2, while Theorem 8.2.1 states that w lies in
the nullspace of P. However, prior to the computation of w, or equivalently,
of 2, it is not possible to verify this condition. An alternative approach to
verifying the compatibility of the data follows: Since lines P;C belong to a rigid
body, vectors p; — ¢ must remain of the same magnitude throughout a rigid-
body motion. Moreover, the angles between any two of the said lines must be
preserved throughout the motion as well. This means that the conditions below
must hold:

(pi _C)T(p]’ --C) = Cij, 7'7.7 = 17233 (813)
or in compact form,
P’P=C (8.14)

where the (i,7) entry of the constant matrix C is ¢;;, as defined in eq.(8.13)
above. Upon differentiation of both sides of eq.(8.14) with respect to time, we
obtain:

Theorem 8.2.2 (Velocity Compatibility) The velocities of three points of
a rigid body satisfy the compatibility condition:

PTP+PTP=0 (8.15)
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with matrices P and P defined in eqs.(8.4) and (8.5) and O denoting the 3 x 3
zero matriz.

The above equation, then, states that for the given velocities of three points of a
rigid body to be compatible, the product PTP must be skew-symmetric. Note
that the above matrix compatibility equation represents six independent scalar
equations that the data of the problem at hand must satisfy. There is a tendency
to neglect the foregoing six independent scalar compatibility conditions and to
focus only on the three scalar conditions drawn from the diagonal entries of the
above matrix equation. This is, however, a mistake, for these three conditions
do not suffice to guarantee data compatibility in this context; all these three
conditions guarantee is that the distance between any pair of points of the set
remains constant, but they say nothing about the angles between the pairs of
lines formed by each pair of points.

Note, on the other hand, that the product PPT has no direct geometric
interpretation, although the difference tr(PPT)1 — PPT does, as discussed in
Exercise 8.9. Furthermore, while Theorem 8.2.2 states that matrix PTP is
skew-symmetric, it says nothing about the product PP7. All we can say about
this product is stated in the result below:

Theorem 8.2.3 With matrices P and P defined in egs.(8.4) and (8.5), the
product PPT obeys the constraint

tr(PPT) =0 (8.16)

If m x n matrices are regarded as forming a vector space, then an inner product
of two such matrices A and B, denoted by (A, B), can be defined as

(A, B) = tr(ABT) (8.17)

the two matrices being said to be orthogonal when the foregoing inner product
vanishes. We thus have that Theorem 8.2.3 states that matrices P and P are
orthogonal, a result that parallels that about the orthogonality of the relative
velocity of two points and the line joining them, as stated in eq.(3.51) and
summarized in the ensuing theorem. The proof of Theorem 8.2.3 is left as an
exercise.

Example 8.2.1 The rigid cube shown in Fig. 8.1 moves in such o way that
vertices Py, Py, and P3 undergo the velocities shown in that figure, for three dif-
ferent possible motions. The length of the sides of the cube is 1, and the velocities
oll have magnitude /2 in Figs. 8.1(a) and (c); these velocities are of unit mag-
nitude in Fig. 8.1(b). Furthermore, in the motion depicted in Fig. 8.1(c), the
velocity of Ps is parallel to line PyPs, whereas that of Py is parallel to line Py P;.
Qut of the three different motions, it is known that at least one is compatible.
Identify the compatible motion and compute its angular velocity.
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(a)

Figure 8.1: A rigid cube undergoing a motion determined by the velocities of
three of its points

Solution: Let p; denote the velocity of P;, of position vector p;. Each proposed
motion is then analyzed: (a) The projection of p; onto Py Ps is 1, but that of p2
onto the same line is 0, and hence, this motion is incompatible; (b) Again, the
projection of p; onto P P, is 1, but that of ps onto the same line vanishes, and
hence, this motion is also incompatible. Thus, the only possibility is (¢), which
is now analyzed more formally: Use a dextrous—right-handed—rectangular co-
ordinate frame with origin at P;, axis Y along PP, and axis Z parallel to
P, P;. All vectors and matrices are now represented in this coordinate frame,
and hence,

0 0 0
P11 = 0 ’ P2 = 1 3 pP3 = 1
0 0 1
1 0 -1
pi=1|1|, p2=11|, p3= 0
0 1 1
Thus,
19 . 1|9
C:'3‘ 2 f C=-‘3‘ 2
1 2

Now matrices P and P are constructed:

[0 00 . 1[3 0 -3
P=2|-2 1 1|, P=g|1 1 -2
-1 -1 2 -2 1 1
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Furthermore,

PTP =

o=
—
|p—-tO
—
|
HO»—A
|
OHH
e 1

which is skew-symmetric, and hence, the motion is compatible. Now, matrix D
is computed:
1 3 0 0
[1tr(P)-P]== ]2 2 -1
611 1 1

D=

DO =

The angular velocity w is computed as the solution to

Dw = vect(P)
where
. 1 3
vect(P) == | -1
61
Equations (8.9) are thus
3w1 =3
2wy + 2wy —w3 = —1
W twetwy=1
The first of the foregoing equations leads to
w1 = 1
whereas the second and the third lead to
2w2 — W3 = -3
wa+wz =20
and hence,
Wy = -—1, w3z =1

Now, as a verification, w should be normal to the three columns of P as defined
in eq.(8.7b); in other words, w should lie in the nullspace of P7. But this is so,

because
3 1 =2 1 0
P%:% 0 1 1 -1 =% 0
-3 -2 1 1 0

thereby verifying that w lies, in fact, in the nullspace of PT.
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8.2.1 A Robust Formulation

The foregoing formulation fails when matrix D of eq.(8.10) becomes singular.
While it is not surprising that the matrix becomes singular in the presence of
three collinear points, it is a bit frustrating that, even if the points are non-
collinear, D becomes singular when tr(P) = 0. Moreover, in light of the lack
of frame-invariance of P, it is not possible to predict geometrically under which
conditions tr(P) vanishes. It is thus imperative to look for an alternative, robust
approach, which is the aim of this subsection.
Upon multiplying both sides of eq.(8.6) by PT from the right, we obtain

PP” = QR, R=PPT (8.18)
Further, if we take the vector of both sides of eq.(8.18), we obtain
1 .
—2-Jw = vect(PPT) (8.19a)
where, by application of Theorem A.1, as done above, J is defined as
J=tr(R)1-R (8.19b)

which, as the reader is invited to prove in Exercise 8.9, is nothing but the
inertia tensor of a system of three unit-mass particles located at points { P; }3
with respect to their mass center, which coincides with the centroid C' of the
three given points. As such, matrix J is, in general, positive-definite, becoming
semidefinite only in the special case in which the three masses are collinear.
Hence, the formulation singularity brought about by the vanishing of tr(P) is
eliminated, which is the reason why this formulation is billed as robust. Hence,
as long as the three given points are noncollinear, eq.(8.19a) can always be
solved for w, thus obtaining

w = 23 Yvect(PPT) (8.20)

Example 8.2.2 Solve Example 8.2.1 with the robust formulation introduced
above.

Solution: We need both matrix J and the right-hand side of eq.(8.19a). To this
end, we compute first

1 0 00
R=PP =-10 2 1
01 2

which is apparently a simple, positive-semidefinite matrix!. Hence,

1 4 0 0
JZE 0 2 -1
0 -1 2

IR is apparently singular because it has one row and one column of zeros; it has two
positive eigenvalues because its trace is 4/3 > 0 and the determinant of its 2 x 2 lower-right
block is 1/3 > 0.
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whose inverse is readily calculated as

1 3 0 O
J7'=210 8 4
210 4 8
Further,
] 1 0 -3 -3 1 4
vect(PPT) = vect 3 0 -1 -2 =3 -3
0 2 1 3
Therefore,
300 1 4 1
w==-10 8 4|=|-3|=j-1
0o 4 8/%]3 1

thereby completing the calculations, and verifying the result obtained with the
non-robust formulation.

8.3 Computation of Angular Acceleration from
Point-Acceleration Data

The angular acceleration of a rigid body under general motion is determined in
this section from knowledge of the position, velocity, and acceleration vectors of
three noncollinear points of the body. The underlying procedure parallels that
of Section 8.2. Indeed, recalling the notation introduced in that section, and
letting vectors p;, for ¢ = 1, 2, 3, denote the acceleration of the given points, one
can rewrite eq.(3.85) for each point in the form

pi=¢+(Q+Q)(p;i—c), i=1,23 (8.21a)

or
Pi—&=(Q+2)(pi—c), i=1,23 (8.21b)

where ¢ was defined in eq.(8.1), and € is the acceleration of the centroid, i.e.,

[

é

il

if)i (8.21¢)

Furthermore, matrix P is defined as
P=[pi-& Po—& ps—¢] (8.22)
Thus, egs.(8.21b) can be written in compact form as

P=(Q+Q)P (8.23)
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from which one is interested in computing Q, or correspondingly, w. To this
end, eq.(8.23) is rewritten as )
QP =W (8.24a)
with matrix W defined as i
W =P - Q’P (8.24b)

The counterpart of Theorem 8.2.1 is now derived from eqs.(8.21b). First,
these equations are cast in the form

ﬁi_é—ﬂz(pi”c)zwx(pi"c), 7:21,273
It is now apparent that if we dot-multiply the above equations by w, we obtain
Pi—¢—Q(pi—c)]-w=0, i=1,2,3 (8.25a)

Upon assembling the three foregoing equations in one single vector equation, we
derive the counterpart of eq.(8.7b), namely,

P-0’P)w=0 (8.25b)
a result that is summarized below in theorem form:

Theorem 8.3.1 The angular-acceleration vector w lies in the nullspace of ma-
triz W7, with W defined in eq.(8.24b).

Just as we did in Section 8.2 when solving for w from eq.(8.9), we apply the
result already invoked in connection with eq.(8.9), thereby deriving an alterna-
tive form of eq.(8.24a), namely,

Dw = vect(P — Q?P) (8.26)
where D is defined as in eq.(8.10). Thus,
w = D~ vect(P — Q?P) (8.27)

with D! given as in eqs.(8.11) and (8.12). As in Section 8.2, then, given
the position, velocity, and acceleration vectors of three noncollinear points of a
rigid body, it is always possible to compute the associated angular acceleration.
However, as discussed in that section, the data cannot be given arbitrarily, for
they must comply with eq.(8.24a), or correspondingly, with eq.(8.25b). The
former implies that the three columns of matrix W lie in the range of matrix
€2; alternatively, eq.(8.25b) implies that € lies in the nullspace of WT. Again,
prior to the determination of €, it is impossible to verify this condition, for
which reason an alternative approach is taken to verifying compatibility. The
obvious one is to differentiate both sides of eq.(8.15), which produces

PP +2PT"P+PTP =0 (8.28)

thereby deriving the compatibility conditions that the acceleration measurements
should satisfy.
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Z

Figure 8.2: A rigid triangular plate undergoing a motion given by the velocity
and acceleration of its vertices

Finally, upon differentiation of both sides of eq.(8.16) with respect to time,
and while doing this, resorting to Lemma A.2 of Appendix A, we have

tr(PPT + PPT) =0 (8.29)

which is the counterpart of eq.(8.16 ).

Example 8.3.1 The three vertices of the equiloteral triangular plate of Fig. 8.2,
which lies in the X-Y plane, are labeled Py, Py, and P, their position vectors
being p1, P2, and p3. Moreover, the velocities of the foregoing points are denoted
by Di, for i = 1,2,3. The origin of the coordinate frame X,Y, Z lies ot the
centroid C of the triangle, the velocities of the vertices, in this coordinate frame,
being given as

a-v2 1% . 4a-v3|% . 4+v2
= 4 0 9 P2 =
1

0 > P3
4 1 4

P

li

0
0
1

Likewise, P1, P2, and P3 denote the accelerations of the three vertices of the
plate, given below in the same coordinate frame:

| [~6+4v3 , [8V3+3v6

Lo 1T Lo 1
1=, V2|, b 51 3V3 ,
0 0
6+ 4v3
Bs = 57 —12163\/5

With the foregoing information,
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(a) show that the three given velocities are compatible;
(b) compute the angular velocity of the plate;

(c) determine the set of points of the plate that undergo a velocity of minimum
magnitude;

(d) show that the given accelerations are compatible;

(e) compute the angular acceleration of the plate.

Solution:

(a) Since the centroid of the triangle coincides with that of the three given
points, we have ¢ = 0. Moreover,

1/2 0 —-1/2
P1 = [—\/5/6} y P2 = [\/3/3‘| » P3 = [—\/5/6]
0 0 0

Thus,
1 3 0 -3
P=-|-v3 2v/3 -3
0 0 0
Furthermore,
0
¢ = 0
(12 — v/3)/12
and hence,

) 1 0 0 0
P= r 0 0 0
V3-3v2 —2v3 V3+3/2
We can readily show from the above results that
PP =0
with O denoting the 3 x 3 zero matrix. Hence, matrix PTP is skew-

symmetric and the velocities are compatible

(b) Next, we have

and

-24/3

vect(P) = —2}4 [—\/58— 3\/§jl
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(c)

Hence, if the components of w in the given coordinate frame are denoted
by w;, for ¢ = 1,2, 3, then we obtain

2\/5(»1 + 3wz = -3

— 2
\/gwl + 3ws + \/gwg = M
(3+2v3)w3 =0

From the third equation,
w3 = 0
Substitution of the foregoing value into the first of the above equations

yields wy = —1/2. Further, upon substitution of the values of w; and w;
into the second of the above equations, we obtain w, = /2 /2 and hence,

-1
V2
0

1
w=-

Let p} be the position vector of the point P§ on the instantaneous screw
axis lying closest to the origin. Now, in order to find pj, we can resort to
eq.(3.70), using point C' as a reference, i.e., with ¢ and ¢ playing the roles
of a and a in that equation. Moreover, since ¢ = 0, the expression for p{
reduces to

1
pp = — Q¢
07 lwlf?
where from item (b),
loll? = >
T4
while _
12-v3[V2
fe=—5r |}
| 0
and hence, )
,_12-v3[V?
Po=—7—| 1
18 0

As a verification, pg should be perpendicular to the ISA, as it is, for the
product wTp) to vanish. Next, the vector representing the direction of
the screw axis is obtained simply as

e=—“’—=‘/?§[—1 vz o]"

[lwll

thereby defining completely the instant screw axis.
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(d) The acceleration of the centroid of the three given points is given as follows:

V6 V3

.._____ _ v T
¢=l-5p —op O

Then, matrices P, PTP, PTP, and PTP are readily computed as

L1 [6+4V/3+v6 -8V3-26 6+4V3+ V6
P:ﬁ 12-3v2+ /3 -2v/3 -12+3vV2+V3
0 0 0

L1 [ 2146V 6-24V3-6V6  15+24V3 W
PP =-—""|6+24/3-66 —-12 6 — 24v/3 + 66
15 — 24/3 6 + 24v/3 + 6v6 —21-6v6

) 1 [ -21+6V/6  6+24/3-6V6  15-243
PTP=-—"16-24/3-6V6 -12 6 + 24v/3 + 616
441" 451943  6-24V3+6V/6 —21—-6v6
.1 [21-6/6 -6+6v6 15
PTP=_— | -6+6V6 12 —6—6v6
M4 15 _6-6/6 21+6V6

Now, it is a simple matter to verify that
PTP +2P"P + PP =0
and hence, the given accelerations are compatible.

(e) Q is defined as the unique skew-symmetric matrix whose vector is w, the
latter having been computed in item (b). Thus,

L 0 V2 [ -2 -2 0
Q= 3 0 0 1], Q= 1 -2 -1 0],
-2 -1 0 0 0 -3

[ 6+v6_ —2v6 6+6
PP=—|-3v2+v3 -2/3 3/2+3
24
0 0 0
Hence,
) , [4/3 —8V/3 4v3
P—QQPzﬂ 12 0 —12
0 0 0

The angular-acceleration vector is thus computed from

D = vect(P — Q2P)
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where D was computed in item (b), while
.. 1 3
vect(P — Q?P) = n VE
3+2v3

and hence, letting w; denote the ith component of w in the given coordi-
nate frame, we obtain

1
—(2\/§a)1 + 303) =

(\/—wl + 3wa + \/_w3) =

3+ 2V3

5"

which yields
0
w=10
1

thereby completing the solution. Note that w lies, in fact, in the nullspace
of matrix (P — Q2P)7.

8.3.1 A Robust Formulation

In computing the angular acceleration vector from point-velocity and -acceler-
ation data, we face exactly the same singularity we faced when computing the
angular-velocity vector. We thus follow the same robust approach introduced in
Subsection 8.2.1. To this end, we multiply both sides of eq.(8.24a) by PT from
the right, thereby obtaining

QR = WPT (8.30)

with R defined already in eq.(8.18). Moreover, from eq.(8.24b),
WwPT = PPT — Q’R (8.31)

Now, the angular-acceleration vector is computed from eq.(8.30) upon taking
the vector of both sides of this equation, namely,

%Ja‘: = vect(PPT — Q’R) (8.32)
whence, as long as the three given points are not collinear, w is computed as
w = 2T 'vect(PPT — Q?R) (8.33)

thereby completing the intended computation.
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Example 8.3.2 Using the foregoing robust approach, compute the angular-
acceleration vector of the motion undergone by the plate of Fig. 8.2, for the
point-velocity and -acceleration data given in Example 8.3.1. Use the value of
w computed in that example.

Solution: All we need now is J and the right-hand side of eq.(8.32). We thus

have }

O O -
O = O
O OO

1
=PPT =2
. [

whence tr(R) = 1; therefore,

(fr oo
J=-{0 1 0
210 0 2
Furthermore,
) [ -2 —4-v2 0
PPT =2 [4-+2 -1 0
81 o 0 0

while © is obtained simply as CPM(w), i.e.,

and hence,

thereby obtaining

) ([0 -1 0
PPT-Q’R==|1 0 0
210 0 o
whence,
0
vect(PPT —Q’R)= | 0
1/2

which thus yields

-f

thereby completing the required computation.



8.4 Exercises 339

8.4 FExercises

8.1 The regular tetrahedron of Fig. 3.10, of unit-length edges, moves in such
a way that vertex P, has a velocity of unit magnitude directed from P; to
Py, whereas the velocity of P, is parallel to edge P P3. Define a coordinate
frame X, Y, Z with origin at Py, Y axis directed from P; to the midpoint
M of P, P;, and X axis in the plane of P, P, P3, as shown in that figure.
With the above information,

(a) find the velocity of Ps;
(b) show that the velocity of P3 cannot be zero;
(c) if the velocity of P; lies in the Py P, P; plane, find that velocity;
(d) find the angular velocity of the tetrahedron;
)

(e) find the set of points of the tetrahedron undergoing a velocity of
minimum magnitude.

8.2 The position vectors of three points of a rigid body, p;, p2, and p3, as
well as their velocities, p1, P2, and ps, are given below:

1 1 —1
P1 = 1 y P2 = -1 y P3 = 1
1] L 1] | —1]
1] [ 3 ] [ —17
I')I: 1 ’ 15)2= 1 ’ 153— 1
| 1] [ —1] [ 3

(a) Is the motion possible?
(b) If the motion is possible, find its angular velocity.

8.3 For matrix P defined as in eq.(8.4), i.e., as
P=[pi—c p2~c p3—c]

where { pi }$ are the position vectors of three points of a rigid body, while
c is that of their centroid, prove that tr(P2) = tr?(P) whenever the three
given points are collinear. Is the converse true?

8.4 With matrix P defined as in Exercise 8.3 above, prove Theorem 8.2.3.
That is, prove that .
tr(PPT) =0

8.5 With the notation of Section 8.3, prove that

vect(Q?P) = Dw
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8.6 Derive the velocity and acceleration compatibility conditions for a body
that is known to undergo spherical motion, i.e., a motion under which one
point of the body remains fixed.

8.7 The position vectors of three points of a rigid body, p1, p2, and p3, are
given as in Exercise 8.2, and repeated below for quick reference:

1 1 -1
pi=|1], pa=|-1|, ps=|1
1 1 -1

Now, the velocities of these points are all zero, while their accelerations
are given as

1 3 -1
f)l = 1 3 f)2 = 1 ’ ﬁS = 1
1 -1 3

(a) Show that the motion is compatible.

(b) Find the angular acceleration of the body.

8.8 With reference to Example 8.2.1, compute the angular acceleration of the
cube of Fig. 8.1(c) if p; = 0, for ¢ = 1,2, 3.

8.9 With the notation of Section 8.2, let
R =PPT

(a) Show that the moment of inertia J of the three given points, which
is identical to that of a system of unit masses located at these points,
with respect to the centroid C of the given points, is

J=tr(R)1-R

(b) Show that if the three given points move as points of a rigid body
undergoing an angular velocity w whose cross-product matrix is 2,
then

J=RQ-QR

(¢) Furthermore, show that if under the conditions of item (b) above, the
set of points undergoes an angular acceleration w of cross-product
matrix 2, then

J=RO-OR - O’R — RO? + 20RO

8.10 A wrench of unknown force f is applied to a rigid body. In order to find
this force, its moment with respect to a set of points { P, }3, of position
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8.11

8.12

8.13

vectors { pi }3, is measured and stored in the set { n; }$. Show that f can
be calculated from the relation

Df = —vect{M)

with D defined as in Section 8.2, i.e., as
= %[tr(P)l P

and M given by
1 &
M=[n—n ny—n nz—n], nzgznk

Note that P is defined in Exercise 8.3.

A wrench is applied to the tetrahedron of Fig. 3.10. When the force of
this wrench acts at point Py, the resulting moment is ny, for £ = 1,2, 3.
For the data displayed below, in frame F of that figure, find the resultant
force £, as well as the line of action of this force that will lead to a moment
of minimum magnitude. Determine this moment.

1 32 32

2 1 1
1112'—£ 0 f ngzﬁ —2\/6 s n3=ﬁ 2\/6
0 2/3 —2v3

Matrix D, as defined from eq.(8.6) and displayed in eq.(8.10), was found to
involve frequent singularities, even in the presence of noncollinear points.
This weakness stems from its lack of frame-invariance, and can be readily
fixed if both sides of eq.(8.6) are multiplied by P from the right. Show
that, under these conditions, an equation similar to (8.9) is derived, but
with D replaced by (1/2)J, with J defined as in Exercise 8.9. Now show
that J is frame-invariant in the sense of Section 2.7, and becomes singular
if and only if the three given points are collinear.

A ball-wheel is used to drive a mobile robot. For feedback control, its
angular velocity must be estimated using information on the velocities of
two of its points, P, and P, under the assumption that the ball rolls
without slipping on a horizontal, rigid floor. The radius of the wheel is
30 mm, and the two above points lie on a horizontal diameter. Now,
define a coordinate frame with origin at the contact point, its Y-axis in
the direction from P; to P» and its Z-axis vertical, as sketched in Fig. 8.3.
Off-board sensors provide reliable estimates, in mm/s, of p; and ps as
displayed below.

120 0
p1=| =60 ), p2=| —60
—60 60
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Z

P, 7 Pg
w Y
—
“/

Figure 8.3: A ball-wheel

(a) Show that the given estimates of p; and ps are compatible.
(b) Find the angular velocity of the ball.



Chapter 9

Geometry of General Serial
Robots

9.1 Introduction

Current serial robots, encountered not only in research laboratories but also in
production or construction environments, include features that deserve a chapter
apart. We will call here general serial robots all non-redundant serial robots that
do not fall in the category of those studied in Chapter 4. Thus, the chapter is
devoted to manipulators of the serial type that do not allow a decoupling of
the positioning and the orientation problems. The focus of the chapter is, thus,
the inverse displacement problem (IDP) of general six-revolute robots. While
redundant manipulators of the serial type fall within this category as well, we
will leave these aside, for their redundancy resolution calls for a more specialized
background than what we have either assumed or given here.

A special feature of serial manipulators of the kind studied here is that they
can admit up to sixteen inverse displacement solutions. Such manipulators are
now in operation in industry, an example of which is the TELBOT System,
shown in Fig. 9.1, which features all its six motors on its base, the motion
and force transmission taking place via concentric tubes and bevel gears. This
special feature allows TELBOT to have unlimited angular displacements at its
joints, no cables traveling through its structure and no deadload on its links by
virtue of the motors (Wilischmiller and Li, 1996).
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Figure 9.1: The TELBOT System (Courtesy of Wilischmiller GmbH, Meers-
burg, Germany)

9.2 The IDP of General Six-Revolute Manipu-
lators

As shown in Chapter 4, the IDP of six-revolute manipulators of the most general
type leads to a system of six independent equations in six unknowns. This is
a highly nonlinear algebraic system whose solution posed a challenge to kine-
maticians for about two decades and that was not considered essentially solved
until the late eighties. Below we give a short historical account of this problem.

Pieper (1968) reported what is probably the earliest attempt to formulate
the inverse displacement problem of six-axis serial manipulators in a univari-
ate polynomial form. He showed that decoupled manipulators, studied in Sec-
tion 4.4, and a few others, allow a closed-form solution of the inverse displace-
ment problem associated with them. However, apart from the simple architec-
tures identified by Pieper, and others that have been identified more recently
(Mavroidis and Roth, 1992), a six-axis manipulator does not admit a closed-
form solution. Attempts to derive the minimal characteristic polynomial for
this manipulator were reported by Duffy and Derby (1979), Duffy and Crane
(1980), Albala (1982), and Alizade et al. (1983), who derived a 32nd-degree
polynomial, but suspected that this polynomial was not minimal, in the sense
that the manipulator at hand might not be able to admit up to 32 postures for a
given end-effector (EE) pose. Tsai and Morgan (1985) used a technique known
as polynomial continuation (Morgan, 1987) to solve numerically the nonlinear
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displacement equations, cast in the form of a system of quadratic equations.
These researchers found that no more than 16 solutions were to be expected.
Briefly stated, polynomial continuation consists basically of two stages, namely,
reducing first the given problem to a system of polynomial equations; in the
second stage, a continuous path, also known as a homotopy in mathematics, is
defined with a real parameter t that can be regarded as time. The continuous
path takes the system of equations from a given initial state to a final one. The
initial state is so chosen that all solutions to the nonlinear system in this state
are either apparent or much easier to find numerically than those of the orig-
inally proposed system. The final state of the system is the actual system to
be solved. The initial system is thus deformed continuously into the final state
upon varying its set of parameters, as t varies from 0 to 1. At each continu-
ation step, a set of initial guesses for each of the solutions already exists, for
it is simply the solution to the previous continuation step. Moreover, finding
the solutions at the current continuation step is done using a standard Newton
method (Dahlquist and Bjorck, 1974).

Primrose (1986) proved conclusively that the problem under discussion ad-
mits at most 16 solutions, while Lee and Liang (1988) showed that the same
problem leads to a 16th-degree univariate polynomial. Using different elimi-
nation procedures, as described in Section 9.3, Li! (1990) and Raghavan and
Roth (1990, 1993) devised different procedures for the computation of the coef-
ficients of the univariate polynomial. While the inverse displacement problem
can be considered basically solved, research on finding all its solutions safely
and quickly still continued into the nineties (Angeles et al., 1993). Below we de-
scribe two approaches to solving this problem: {) the methods of Raghavan and
Roth (1990, 1993) and of Li (1990), aimed at reducing the displacement rela-
tions to a single univariate polynomial; and %) the bivariate-equation approach,
introduced in (Angeles and Etemadi Zanganeh, 1992).

It will become apparent, however, that a streamlined algorithm guaran-
teeing the reduction of the system of 14 fundamental equations, as derived in
Section 9.2.2, to a lower number of equations in only one or two unknowns, is
still lacking. To be true, Husty, Pfurner and Schrécker (2005) just reported a
geometric approach to the reduction of interest that appears quite promising in
obtaining such a streamlined algorithm.

9.2.1 Preliminaries

We start by recalling a few definitions that were introduced in Chapter 4. In
Section 4.2 we defined the matrices Q; and the vectors a; associated with the
coordinate transformations from frame F;;1 to frame F; or, equivalently, the
displacement of the latter to the former. The 4 x 4 homogeneous matrix—see

IN. B. Lee and Li of the references in this chapter are one and the same person, namely,
Dr.-Ing. Hongyou Lee (a.k.a. Dr.-Ing. Hongyou Li).
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Section 2.5—transforming coordinates in F;;1 to coordinates in JF; is given by

A; = [OQ; ‘;] (9.1)

where 0 is the 3-dimensional zero vector, while the 3 x 3 rotation matrix Q; and
the 3-dimensional vector a; were defined in Chapter 4 as

¢ NS S aic;
Qi= s A —pic |, a; = | a;s; (9.2)
0 i Ad b;

In the above definitions we used the Denavit-Hartenberg notation, whereby a;
is the distance—and hence, a; > 0—between the Z;- and the Z;,,-axes, while
b; is the offset——o00 < b; < +0o—between the X;- and X;1-axes, as measured
along the positive direction of the Z;-axis. Moreover,

¢; =cosb;, s;=sinb;, M\ =cosq;, u;=sing;

where 8; is the ith joint angle, measured from X; to X, in the positive direction
of Z;, and a; denotes the twist angle from Z; to Z,; in the positive direction
of X;44, for i = 1,...,6. Furthermore, the factoring of matrix Q;, introduced
in eq.(4.2a), is reproduced below for quick reference:

Q: = Z;X; (9.3)

with X; and Z; denoting two pure reflections, namely,

1 0 0 C; 8 0

X,’ =10 _)\i i s Zi = |8 —C; 0 (946)
0 i /\,’ 0 0 1

X =X,=X;' zI=%2,=7;" (9.4b)

the foregoing reflections thus being both symmetric and self-inverse—see Sec-
tion 2.4. As a consequence,

Q] =XiZ;
We will also use the partitionings of Q; displayed in eq.(4.12), namely,

m7

Qi=[pi & w)]=|n
[e]

oo

(9.5)

-y

A quick comparison between eqs.(9.2) and (9.5) leads to the relations below:

¢ 8; 0
m;= | =As |, m=| N |, 0= |y (9-6)
WiS; —IiCi Ai



9.2 The IDP of General Six-Revolute Manipulators 347

Further, let us recall the definition introduced in eq.(4.13), e = [0 0 l]T,
along with that in eq.(4.3d), a; = Q;b;, which readily leads to b; = Q7 a;.
Hence,

HiSq a;
u; = Qie = | —iC; and b, = bi/J,i (97)
Ai b

where we have reproduced eq.(4.3e) for quick reference. Moreover, since e; =
[e;]: = [eit1]i+1, the above expression for u; leads to

u; = Qileirit1 = [eirali (9.8a)
which means that u; represents e;; in F;. Likewise,
0; = Q] [e;]: = [ei]i1 (9.8b)

Now, using eqs.(9.4a) and the second of eq.(9.7), we introduce the definitions

v, =Zia; =X;bj=[a; 0 b]" (9.9)
whence
bi = Xz"'yi (910)
Furthermore, vector x; of eq.(4.11) is reproduced below for quick reference as
well:
_ | cos8;
X; = [sinﬂi:l (911)

A useful concept in this context is that of bilinear form: An algebraic ex-
pression of the form Auv, where u and v are two given scalar variables and A is
independent of u and v, is said to be bilinear in u and v. Likewise, an expression
of the form Au2v? is said to be biguadratic in u and v, with similar definitions
for bicubic, trilinear, and multilinear forms. Moreover, the same definitions ap-
ply to vector and matrix expressions, as pertaining to their components and,
correspondingly, their scalar entries.

In light of the definition of x;, additionally, we shall refer to an expression
of the form

E) = Acosb; + Bsinf; + C (9.12)

in which coefficients A, B and C are independent of 8;, as being linear in x;.
Likewise, an expression of the form

Ey = Acosf;cosb; + Bcosl;sinf; + Csinf; cosd; + Dsinf;sind; + F (9.13)

with coefficients A, B, ..., F independent of both #; and §;, will be termed
bilinear in x; and x;. In fact, such an expression may also involve terms linear
in x; and x; alone. More generally, an expression involving terms with products
such as cos? ; cos? §; and other terms with similar products of the same or lower
degree will be termed biquadratic in x; and x;. Now we have
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Lemma 9.2.1 Let matriz A be skew-symmetric and B be defined as the simi-
larity transformation of A given below:

B = Q;AQT (9.14)

where Q; was recalled in eq.(9.2) and A is assumed to be independent of 6;.
Then, B is linear in x;.

Proof: 'This result follows from relation (2.141). Indeed, as the reader can
readily verify, B is skew-symmetric, and the product Bv, for any 3-dimensional
vector v, can be expressed in terms of b, defined as vect(B)-—see Section 2.3.3.
That is,

Bv=bxv

If a denotes vect(A), then a and b, by virtue of eq.(9.14) and the results of
Section 2.6, obey the relation

b:Qia

Hence,
Bv =(Q;a) xv

thereby showing that the resulting product is linear in x;, q.e.d.
Moreover, let

0;
T; = tan (“2‘) (9.15a)
which allows us to write the identities below, as suggested by Li (1990):
8§ —TiCG; =Ty, Tisi+e =1 (915b)

We now define p as the vector directed from the origin of F; to the op-
eration point (OP) P of Fig. 9.2. Moreover, we let 1 = [l ,, [,]7, m =
[mg, my, m;]T, and n = [ng, ny, n,]7 represent the three mutually perpen-
dicular unit vectors parallel to the X7, Y7 and Z; axes, respectively, of F7, which
has its origin at P—a layout of these axes is depicted in Fig. 4.3 for a decoupled
manipulator. Hence, the pose of the EE is described in the base frame F; by
means of the homogeneous transformation A given as

ly Mz Ny
A:[Q 11)], Q=[1 m n]=|l, my ny

I, m, n,

In the next step, we derive a set of scalar equations in five unknowns, upon
eliminating one of these, that is fundamental in computing the solution of the
problem at hand.
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Figure 9.2: Partitioning of the manipulator loop into two subloops

9.2.2 Derivation of the Fundamental Closure Equations

Given the geometric parameters of the manipulator and the pose of the EE
with respect to the base frame, we derive the manipulator displacement equa-
tions, a.k.a. the loop-closure equations, from which all unknown angles are to be
computed. We start by recalling the (matrix) rotation and (vector) translation
equations of the general six-axis manipulator, as displayed in egs.(4.9a & b),
and reproduced below for quick reference:

Q1Q2Q3Q4Q5Q6 = Q (9.16a)
a; + Quas + Q1 Qeaz + ...+ Q1Q2Q3Q4Qza6 = p (9.16b)

The use of 4 x 4 homogeneous transformations in the ensuing preparatory
work will ease the suitable recasting of the foregoing equations. Thus, by using
the matrices A; of eq.(9.1) in the above rotation and translation equations, we
end up with a 4 x 4 matrix equation, namely,

A1AsAZAAsAg = A (9.17)

The unknown variables in the above equations are the joint angles {6;}$; the
IDP thus consists in solving the closure equations (9.16a & b) or, equivalently,
€q.(9.17), for these unknowns. The said equations comprise 12 scalar equations
and four identities; however, among these equations, only six are independent,
for the columns (or the rows) of a rotation matrix must form an orthonormal—
mutually orthogonal and of unit magnitude—set of vectors. The orthonormality
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property of the columns or rows of a rotation matrix, thus, brings about six
scalar constraints.

The basic approach to solving the IDP resorts to disassembling the kine-
matic chain of the manipulator at two joints, e.g., joints 3 and 6, to obtain two
subchains or subloops (Li et al., 1991). The first subchain, as suggested in the
foregoing reference, and depicted in Fig. 9.2, goes from joint 3 to joint 6 via
joints 4 and 5, while the second subchain goes from joint 6 to joint 3 via the EE
and joints 1 and 2. Algebraically, this is equivalent to rewriting eq.(9.17) in the
form

AzALAs = AJTATTAAG! (9.18a)

Note that each side of eq.(9.18a) bears a specific structure. Indeed, if we denote
by L, and R, the left- and right-hand sides of eq.(9.18a), we have

[111(03,04,05) 112(63,04,05) 113(03,04,05) 114(62,04,05)
L. = |121(03,04,85) 122(05,64,85) 123(63,64,65) 124(63,04,065) (9.18b)
fT | 131(64,05) I32(04,05) l33(04,65) 134(84,05) ’
| 0 0 0 1
[711(01,602,65) 112(01,02,06) 713(01,02) r14(61,602)
R. = | 721(01,02,06) 722(01,02,05) 723(01,82) 724(61,65) (9.18¢)
* 7 | 731(61,62,06) 7T32(61,62,06) r33(61,62) 734(61,62) '
L 0 0 0 1

where [;; and r;; denote nontrivial components of the left- and the right-hand
sides, respectively, of eq.(9.18a). Note that, because of the forms of matrices Q;,
whose third rows are independent of §;, the third row of L,, as made apparent
in eq.(9.18b), is free of #5. Likewise, the third and fourth columns of R, as
made apparent in eq.(9.18c), are free of 6g.

It should be apparent that other pairs of joints can be used to disassemble
the kinematic chain of the manipulator into two subchains; what matters is that
none of the two subchains contains more than three joints; else, the entries of the
homogeneous matrices become unnecessarily complex on one side of the matrix
equation, while the entries of the other side become unnecessarily simple.

Now we extract one rotation and one translation equation from the 4 x 4
matrix equation (9.18a), namely,

Q:Q4Qs = Q7 Q7 QQ7 (9.19a)
Q3(bs + Q4bs + Q4Qsbs) = Q7 QT (p — Qbg) — (b2 + Q7 by)  (9.19b)

which are kinematicolly equivalent to eqs.(9.16a & b), but algebraically much
stmpler. Note that, in eq.(9.19b), we used the second eq.(9.7) to substitute a;
by Q:b;. In the sequel, we will need the two products below:

Qse = Qslesls = [es]s (9.20a)
Q7 e = Qf'les)s = 06 = [eg]r (9.20b)

where we have recalled relations (9.8a & b); whence,

QQ7e = Qles]r = [es): = 06 (9.20¢)
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Further, we equate the product of each of the two sides of eq.(9.19a) by e from
the right, to obtain, in light of eqs.(9.20a & c),

Q3Qules]s = Q2 QT [eg)y (9.21a)

Both sides of eq.(9.21a) thus represent the unit vector eg in frame Fj; the
difference between the two sides should be apparent: while the left-hand side is
obtained by transforming [eg]s into [eg]s, the right-hand side by transforming
[e6]1 likewise. On the other hand, eq.(9.19b) can be cast in the form

Q;(bs + Qsbs + Q4Qsbs) = QT QT p — (bz + Q1 by) (9.21Db)

where p = p — Qbg = [p — ag]i. Hence, the left- and the right-hand sides of
€q.(9.21b) represent vector az + a4 + ay in frame J3, the difference being that
the left-hand side is obtained by carrying the Fy-representation of the vector
into F3, while the right-hand side does so from the Fi-representation of the
same vector.

Further, let the left- and the right-hand sides of eq.(9.21a) be denoted by h
and i, respectively, while the counterparts of eq.(9.21b) by f and g, i.e.,

h = h(63,04,05) = Q3Qqus (9.22a)
i=i(61,6:) = Q7 Qf o6 (9.22b)
f = £(03,04,05) = Qs(bs + Qabs + QaQsbs) (9.22¢)
g =g(01,0:) = Q3 QI p— (b2+Qib1) = QI (QTp—by) —by  (9.22d)

Further, notice that arrays f and g represent, in fact, the first three entries of the
fourth columns of the matrices of eqs.(9.18b) and (9.18c¢), respectively. Likewise,
arrays h and i represent the third columns of the same matrices. Vectors g and
i are thus free of 6.

Now, the six scalar equations (9.21b) and (9.21a) reduce, correspondingly,

to
fm(03’94’05) gz(91;92)
f=g or fy(03,04,05) | = | g4(61,62) (9.23a)
f2(04,05) 9.(61,62)
[%(93,94,95)} rz(01,92)j|
h=i or hy(03,04, 05) = iy(01, 02) (923b)
h.(64,05) i.(61,02)

It should be noted that h and i are both unit vectors. Thus, each side of
€q.(9.23b) is subjected to a quadratic constraint, i.e.,

h-h=1 i-i=1

and hence, out of the above six scalar equations, only five are independent.
However, the number of unknowns in these six equations is also five. There-
fore, egs.(9.23a) and (9.23b) suffice to determine the five unknown joint angles
contained therein.
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Although we already have one redundant equation to compute the six un-
known angles, it will prove convenient to derive eight additional equations with
the same power products? as f, g, h and i, namely,

f-f=g-g (9.23¢)

f-h=g-i (9.23d)
fxh=gxi (9.23¢)
f-Hh-2(f-hHf =(g-g)i—2(g-i)g (9.23f)

It is noteworthy that eq.(9.23f) is derived by first equating the reflection® of
vector h onto a plane normal to f with its counterpart, the reflection of vector i
onto a plane normal to g. The final form of eq.(9.23f) is obtained upon clearing
denominators in the foregoing reflection equation.

Equations (9.23a-f) amount to 14 scalar equations in five unknown joint
variables {6;}3. These are the fundamental closure equations sought. Some
facts pertaining to the degree of the two sides of eqs.(9.23c—f) are proven below:

Fact 9.2.1 The inner products £ -f and f-h are both free of x3 and bilinear in
{x:}3, while their counterparts g-g and g - i are bilinear in x1 & xa.

Proof:

f-f =||Qs(bs + Qsbs + Q4Qsbs)||?
= ||bs + Qsbs + Q4Qsbs||?

5
= 3" Ibi|* + 2b7 Qa(bs + Qsbs) + 2b] Qsbs
3

whose rightmost-hand side is clearly free of x3 and is bilinear in {x; }§. Simi-
larly,

f-h = (bs + Qsbs + Q1Qsbs)" Q7 Q3Quus
= b] Qqus + b] us + b Q7 us

whose rightmost-hand side is apparently bilinear in x4 and x3, except for the
last term, which contains two factors that are linear in x5, and hence, can be
suspected to be quadratic. However, Qsbs is, in fact, as, while uy is the last
column of Qs, the suspicious term thus reducing to a constant, namely, bs cos as.
Similar proofs for g - g and g - i will be given presently. Moreover,

Fact 9.2.2 Vector f X h is trilinear in {x; }3, while its counterpart, g x i, is
bilinear in {x; }3.

2By power product we mean terms with their coefficients deleted; for example, the power
products of the polynomial 522y + 3z2 + 9y2 + 42 = 0 are the terms x’y, zz, ¥* and 2.

3Neither Li nor Raghavan and Roth disclosed the geometric interpretation of this fourth
equation, first proposed by Lee and Liang (1988).
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Proof: If we want the cross product of two vectors in frame A but have these
vectors in frame B, then we can proceed in two ways: either (¢) transform
each of the two vectors into A-coordinates and perform the cross product of
the two transformed vectors; or (4¢) perform the product of the two vectors
in B-coordinates and then transform the product vector into A-coordinates.
Obviously, the two products will be the same, which allows us to write

f xh = Q3 [bs x (Qqus) + (Qabs) X (Qqus) + (Q4Qsbs) x (Qqus)]
= Qs{bs % (Qqus) + Q4(bs x us) + Q4 [(Qsbs) x us)]}

whose rightmost-hand side is apparently trilinear in { x; }3, except for the term
in brackets, which looks quadratic in x5. A quick calculation, however, reveals
that this term is, in fact, linear in x5 as well. Indeed, from the definitions given
in egs.(4.3¢ & d) and (9.5) we have

asAs8s + bspscs
(Q5b5) XUy =ag Xug = | —asiscs + b5u535
— Qs 5

which is obviously linear in x5. The proof for the counterpart product, g x i,
parallels the foregoing proof, and will be given below.

Fact 9.2.3 Vector (f - f)h — 2(f - h)f is trilinear in {x;}3, its counterpart,
(g-g)i—2(g-i)g, being bilinear in {x; }3.

Proof: First, we write the (elongated or contracted) reflection of vector h in the

form
(f-fih —2(f- h)f = Qav

where
V= (25: Hbz'1|2> Qaus — 2[(ug Qabs)bs + (uf bs)bs + (ug bs)Quby
-&ﬁ%mmﬂﬁﬁmmmmﬁﬁﬁ%mM&wdww

= (i Hbi”2> Quus — 2[ulby(bs + bz + Qsby)

+ul Qsbs(bs + Qsby + Q4Qsbs) + 2w

with all terms on the right-hand side, except for w, which will be defined
presently, clearly bilinear in x4 and x5. Vector w is defined as

w={l+[L+[]s
each of the foregoing brackets being expanded below:
[ I = [(05 Q4ba)Qqus — (u Qf b3)Q4bsy)
= Qu(usbi Qf — bauf QF)bs
= Qq(usbf — baug)Qybs
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which thus reduces to a product including a factor of the form Q;AQ7, with A
being the term in parentheses in the rightmost-hand side of the last equation.
This is obviously a skew-symmetric matrix, and Lemma 9.2.1 applies, i.e., the
rightmost-hand side of the last equation is linear in x4. This term is, hence,
bilinear in x4 and x5. Furthermore,

[ 1, = [(b] Qsb5)Qqus — (uf bs)QaQsbs]
= Q4 [(b5 Q5 ba)us — (ug ba)Qsbs]
= Qa(usbf Qf — Qsbsug)b,

which is apparently linear in x4, but it is not obvious that it is also linear in x5.
To show that the second linearity also holds, we can proceed in two ways. First,
note that the term in parentheses is the skew-symmetric matrix usal — asu?,
whose vector, as X 15, was already proven to be linear in x5. Since the vector of a
skew-symmetric matrix fully defines that matrix—see Section 2.3—the linearity
of the foregoing term in x5 follows immediately. Alternatively, we can expand
the aforementioned difference, thereby deriving

0 as s —asAscs + byusss
USag - asug = —as5 5 0 —asAsss — bspuscs
asAscs — bspsss  asAsss + bspscs 0

which is clearly linear in x5. Moreover, its vector can be readily identified as
ay X uy, as calculated above. Finally,

[ 1, = [(b3 QaQsbs)Quus — (ul QTb3)Q4Qsbs]
= Qu(usb QF — Qsbsul)QTb;
= Q4(usai — asui )Q by

this bracket thus reducing to a product including the factor Q;AQ7, with A
skew-symmetric. Hence, the foregoing expression is linear in x4, according to
Lemma 9.2.1. Moreover, the matrix in parentheses was already proven to be
linear in x5, thereby completing the proof for vector {f - £)h — 2(f - h)f. The
proof for vector (g-g)i—2(g-i)g parallels the foregoing proof and will be given
presently.

Finally, we have one more useful result:

Fact 9.2.4 If o scalar, vector, or matriz equation is linear in x;, then upon
substitution of ¢; and s; by their equivalent forms in terms of 7; = tan(6;/2),
the foregoing equation becomes guadratic in 7; ofter clearing denominators.

Proof: 'We shall show that this result holds for a scalar equation, with the
extension to vector and matrix equations following directly. The scalar equation
under discussion takes on the general form

Ac;+Bs;+C =0
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where the coeflicients A, B, and C do not contain ;. Upon substituting ¢; and
s; in terms of 7; = tan(6;/2), and multiplying both sides of that equation by
1+ 72, we obtain

AQ=7H+ 2B +C1+72) =0

which is clearly quadratic in 7, g.e.d.

Moreover, if a scalar, vector, or matrix equation is of degree & in x;, upon
introducing the same trigonometric substitution, the said equation becomes of
degree 2k in 7;.

Expressions for the right-hand sides of egs.(9.23¢c—d) are given below:

2
g-g= > Ibil +ol? — 267Q1(Qubs + 1) +2b7Quby  (9.24a)
1
g-i=0f(p—QiQ:bz ~ Qb)) (9.24b)
gxi=Q;Q{ (pxas) by x Q;Q{ a6 —Q; (b1 x Q{oe)  (9.24¢)

and

2
(g-g)i-2g-i)g= <Z I[bal + ||p|l2> Q; Q{ a6
1
—2[(03 £)(Q3 Qf p — bs — Q5 b1) + (5 Q1 Qzb2)bo
+(0§ Qib1)by + (05 Qib1) Q] b] + 2w (9.24d)
In deriving and simplifying the above relations, we use the invariance relations—

see Section 2.7—of the dot and cross products, i.e., for any arbitrary vectors u
and v, we have

(Qiw)T(Qiv) =uv
(Qiu) x (Qiv) = Qi(u x v)

All the terms on the right-hand sides of eqs.(9.24a—d), except for w', are ap-
parently bilinear in x; and x5. This bilinearity also holds for the last term in
€q.(9.24d), i.e., w', which can be expressed in the form

w=[ i+l L+l I (9.25)

Each of the above brackets is given as

[ 1 =[(0F Q1Q2b2)Q7 QT p — (P Q1Q2b2)Q] QY 54

=(Q; Q)(pa§ — 0'6PT)(Q2Q1)b2 (9.26a)
[ ]2 = [(b] Q2b2)QI Qf 06 — (07 Q1Q2b2)Q] by ]
31(Qf o6)b1 — b1(Qf 76)T]Q2b2 (9.26b)

[ ]3 = (62 Q1b1)QT QT p — (pTQ1b1)QF QT 6]
= Q7 [Q] (pog — g6p”)Qu]by (9.26¢)
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According to Lemma, 9.2.1, the terms in the right-hand sides of relations (9.26a—
¢) are all bilinear in x; and x».

Tt is noteworthy that the third components of vectors £ x h and (f - f)h ~
2(f - h)f, as well as £-f and f - h, are all free of 6;5. Hence, among the 14
scalar equations, i.e., eqs.(9.23a~f), six are free of 5. Casting all 14 equations
in vector form results in the fundamental closure equations:

PX45 = RX12 (927)

where P and R are 14 x9 and 14 x 8 matrices, respectively. Moreover, the entries
of P are linear in x3, while those of R are independent of the joint angles. In
addition, the 9- and 8-dimensional vectors x45 and x5 are defined as

X5 =[5485 S4C5 €485 C4C5 S84 C4 S5 Cs 1]T (9.28a)

T
X12 =[5182 $1€2 €182 ¢1ca 81 €1 Sy C2] (9.28b)

Various approaches have been reported to solve the fundamental closure
equations for the unknown joint angles, but all methods fall into two categories:
(1) purely numerical approaches, whereby no attempt is made to reduce the
number of unknowns (Angeles, 1985), or the reduction is rather limited, from
six to four unknowns (Tsai and Morgan, 1985); and (i) elimination approaches,
whereby unknowns are eliminated algebraically, as opposed to numerically, until
a reduced number of equations in a reduced number of unknowns is derived.

We focus here only on the second category. Of these, we have essentially two
classes: (a) the univariate-polynomial approach and (b) the bivariate-equation
approach. As the names indicate, the former aims at reducing the fundamental
equations to one single equation in one unknown. Moreover, that single equa-
tion, being polynomial in form, is termed the characteristic polynomial of the
problem at hand. The polynomial is derived upon substituting the cosine and
sine functions of the unknown angle, say 0, by (1-72)/(14+T?2) and 2T/ (14+T?),
respectively, with T = tan(f,/2). This transformation is well known as the tan-
half trigonometric identities. The second approach, in turn, aims at reducing all
fundamental closure equations to a smaller system of trigonometric, as opposed
to polynomial, equations in only two unknowns.

The transformation of the original problem given in terms of trigonometric
functions of the unknown angles into a polynomial equation in 7T is essential
from a conceptual viewpoint, for this transformation makes apparent that the
problem under study admits a finite number of solutions, namely, the degree
of the characteristic polynomial. On the other hand, the same transformation
is not trouble-free. Indeed, the mapping from 8, into T apparently includes
a singularity at 8, = w, whereby T — oo. The outcome is that, if one of
the solutions is 8, = 7, then the characteristic polynomial admits at least one
solution at infinity, which is reflected in a deflation of the polynomial. This
phenomenon, called polynomial deflation, was made apparent in Example 4.4.3,
where a quartic characteristic polynomial appeared as cubic because of one
solution at infinity. The beginner may thus be misled to believing that, in
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the presence of a solution at infinity, the system at hand admits a smaller
number of solutions than it actually does. Furthermore, in the neighborhood
of 8, = m, one of the solutions is extremely large in absolute value, which thus
gives rise to numerical inaccuracies, generically referred to as ill-conditioning.
As a matter of fact, the problem of polynomial-root finding has been identified
as ill-conditioned by numerical analysts for some time (Forsythe, 1970).

In order to cope with the foregoing shortcomings of the tan-half identities,
the author and his team devised an alternative means, the bivariate-equation
approach, to solving the problem at hand and other similar ones in computa-
tional kinematics (Angeles and Etemadi Zanganeh, 1992a, b). In this approach,
the 14 equations are reduced to a system of bivariate trigonometric equations
in the sines and cosines of two of the unknown angles. These equations are then
plotted in the plane of the two unknowns, thus obtaining four contours, whose
intersections yield the real values of the two unknowns. As a matter of fact,
only two such equations would suffice; however, it turns out that the underly-
ing reduction cannot be accomplished without the introduction of either extra
equations or spurious roots, which must be detected in order to discard them.
Notice that, for an intersection point to qualify as a solution, all contours must
meet at that point. As illustrated with one example, even the use of extra con-
tours does not guarantee a legitimate solution. Spurious solutions fail to allow
for the computation of the remaining four joint angles.

9.3 The Univariate-Polynomial Approach

We describe here two procedures leading to one single univariate 16th-degree
polynomial equation, which is the characteristic polynomial of the system at
hand. The two procedures bear many similarities, but they also involve re-
markable differences that warrant separate discussions.

9.3.1 The Raghavan-Roth Procedure

A sophisticated elimination procedure was proposed by Raghavan and Roth
(1990; 1993). Their procedure is based on egs.(9.23a—f), but their 14 closure
equations are different, as explained below.

At the outset, Raghavan and Roth define four vectors that will play a key
role in the ensuing derivations, namely,

L. fi

f= f(04,05) = f2 = Zsf = X3(b3 + Q4by + Q4Q5b5) (929&)
f3

h=h(#)=|h|=Qeg+a;=Qfp—-b; (9.29b)

hs
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1
r= f‘(04,95) = | T2 = Z3h = X3Q4115 (929C)
T3
ni
A=0(0) = [n| = Qui=Qfos (9.29d)
n3

Expressions for the components of the above four vectors are given in Table 9.1,
where ¢; (i = 1,2,3), p, ¢, 7, u, v, and w are auxiliary variables. Using

Ttem Expression Ttem Expression
Iil Cql1 + 8412 + a3 1 camy -+ 84mo
fa —As(8at1 — cata) T2 —A3(84m1 — camy)
+ U3t3 + 133
fs M3(84L1 - C4L2) 3 u3(84m1 - C4m2)
+ Astz + b3 + Asms
L1 csas + aq mi 8545
Lo —85A4as5 + gy ma CsAqpis + fgAs
L3 8spaas + Aabs + by ms3 —Csfiats + Ag s
hi ap+si19—ap 1 cau+ s1v
ho —A1(81p — ¢19) ng =X {8194 — c1v)
+pa(r ~di) + mw
h3 (810 — 19) ng (814 — ¢1v)
+Mi(r —di) +Mw
p —lza6 — (Mmypie + nzAe)ds u My fbe + Nz A6
+ D
q —lyae - (myuﬁ -+ qny)\(;)da v My e + ny/\e
+ Dy
r —l.a¢ — (mzllfﬁ + nzA6)d6 w Mzle + NnzAe
+ D2

Table 9.1: Expressions for the components of vectors f, h, ¥, and i

eqs.{9.29a-d), (9.3), (9.4b), (9.10), and (9.9), we can rewrite egs.(9.21a & b) in
terms of the foregoing vectors, namely,

ng‘(04,05) = XzZQﬁ(el) (930&)
Z3i‘(64, 95) = Xg[szl(ol) - ’72] (930b)
where we have recalled definitions (9.9) for ¢ = 2. These six scalar equations

play a key role in deriving the Raghavan-Roth equations in five unknowns that
are needed to solve the problem at hand.

Next, both sides of egs.(9.30a & b) are multiplied from the left by X;* =

XTI = X,; then, the two equations thus resulting are rearranged in the forms

XoZsf + v, = Zoh (9.31)
Xy ZsF = Zohh (9.32)
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Now, four new vectors, the counterparts of those introduced in eq.(9.22a~d),
are defined as

f =X,Zsf + v, = Xo(Zsf + by) (9.33a)
g=2,h (9.33b)
h = X,ZsF (9.33¢)
i=Z,i (9.33d)

Note that f and h are trilinear? in x3, x4, and x5, while the first two compo-
nents of g and 1 are bilinear in x, and x2, their third components being linear in
x; and free of §3. Similar to eqs.(9.23a & b), six scalar equations are obtained:

= E (9.34&)
i (9.34b)

Moreover, eight more scalar equations are obtained in the forms

f-f=g-g (9.34c)

f-h=g-1 (9.34d)
fxh=gxi (9.34e)
f-Hh—2(f-h)f = (g-8)i—2Eg-1)g (9.34f)

The fourteen scalar equations (9.34a—f) are henceforth termed the Raghavan-
Roth (RR) equations.

The third components of the two vectors on the right-hand sides of eqs.(9.34e
& f), and the terms on the right-hand sides of eqs.(9.34c¢ & d) are free of §; and
linear in x;. As proven by Raghavan and Roth in the above references, the eight
foregoing equations have the same power products as f, h, g, and 1. Now, the
14 RR equations (9.34a-f) are cast in the form

§X45 = ﬁxlg (935)

where P and R are 14 x 9 and 14 x 8 matrices, respectively. Moreover, the
entries of P are linear in x3, while those of R are independent of the joint
angles; moreover, R has the structure:

4while the last row of Z3 is free of #3, the last row of X2Z3 is (n283, —p2c3, Az].
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x x x x 0 0 x X7
X X xXx x 0 0 x x
0 0 0 0 x x 0 0
X X xXx x 0 0 x 0
X X x x 0 0 0 x
0 0 0 0 x x 0 0
= 0 0 0 0 x x 0 O
R=10 00 0 x x 0 0 (9.36)
Xx X x x 0 0 x 0
X X X x 0 0 0 x
0 0 0 0 x x 0 O
X x x x 0 0 x x
X X x x 0 0 x x
L0 0 0 0 x x 0 Ol

In the above display, all nonzero entries are denoted by x and rows are written
according to the order of appearance in eqs.(9.34a—f). This special structure of
matrix R is then exploited to eliminate the joint angles §; and 6, in an efficient
way.

Based on the structure of R, two groups of six and eight equations are
defined:

PuX45 = CX1 (937&)
Pix4s = A%yo (9.37D)

where C is a 6 x 2 constant matrix that is formed by the nonzero entries in rows
3,6, 7,8, 11, and 14 of matrix R. A is, in turn, an 8 x 6 matrix whose entries
are all functions of the data, while x; and x45 were defined in eqs.(9.11) and
(9.28a), respectively; X;2 is, in turn, the 6-dimensional vector defined as

~ T
X125[8182 81C2 C182 Ci1C2 89 C2] (938)

Furthermore, P, comprises the third, sixth, seventh, eighth, 11th and 14th rows
of P, P; comprising the remaining eight rows. Notice that P,, and P; are both
linear in x3.

Any two of the six scalar equations in eq.(9.37a) can now be used to solve
for x1, the resulting expression then being substituted into the remaining four
equations of the same group. This is done by first partitioning the six scalar
equations as

C,x; =d, (9.39a)
Cix; = d; (9.39b)
where C,, and C; are 2 x 2 and 4 x 2 submatrices of C, respectively, with d,

and d; being the corresponding 2- and 4-dimensional vectors that result from
P, x45; these two vectors are trilinear in x3, x4 and x5. If eq.(9.39a) is solved
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for x; and the result is substituted into eq.(9.39b), we obtain four equations
free of #; and 65, namely,

—f4X45 = ClC,‘Ildu — dl = 04 5 f4 = ClC,;l(_I—)u)g - (?u)‘; (940&)

in which T, is a 4 x 9 matrix whose entries are linear in x3, while (Py)2 and
(Py)s are 2 X 9 and 4 x 9 submatrices of matrix P,,, respectively. The above
set of equations is now cast in the form

Diys =04 (9.40b)

with D, defined as a 4 x 3 matrix whose entries are bilinear in x4 and x5, while
04 is the 4-dimensional zero vector, and y3 is defined as

ys=[es s3 1]7 (9.41)

If C,, is chosen with nonzero entries in the third and sixth rows of matrix R,
then we have

C.= [‘“p _’““q] (9.42a)
. —po

with p, ¢, u, and v listed in Table 9.1. If C, is nonsingular, C,! is readily
obtained as

1 1 - q
C.' = pi1 (ug — pv) [—U P] (9.42b)

However, if C, turns out to be singular, then a different pair of eqs.(9.37a), of
the set associated with rows 3, 6, 7, 8, 11 and 14, should be selected.

Additional equations free of 8; and €s can be derived from any six of the
eight equations in eq.(9.37b), which can be used to solve for %12; the expressions
thus resulting are then substituted into the remaining two equations. In this
way, two additional equations free of 8; and #; would be obtained. However,
this elimination process is not suitable for symbolic computations. Instead,
Raghavan and Roth (1990) derived the two additional equations in a terser
form. This is done by finding two independent linear combinations of the eight
equations (9.37b) that render identically zero all terms in #; and 6. The left-
hand sides of these equations are given as

$1(83,0 0)=ﬁ%—[(“.?)7; —2(?.5)7]_ﬂi<sﬁ +-"ia7
13)4)5—2a1 x T 2allz ang;

—A1i4 (? bd K)w + ,ulwfy —pa(r — bl)-ﬁy (9.43a)

$2(05,04,05) = 21 [ - T)B, — 2 - B)F,] — Mg (F x ),

2
1
2(11

7 T R I
_llflwfm + ul(r — bl)h;,; + Zl'l—dzfy - §—a—1“(51hy (943b)
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while the right-hand sides are

u3 I i
= Pz g - 28 1)7,]) ~ -6 + FLayg
(U Sa; [(B-8)ix — 2(8-1)7,) pa Ot + G 020

—~Ap (X 1)z + mwg, — (r— bl)fy (9.43¢)
I
(R E[(E By — 2819, — Mm (B x 1)y
I 1%
WG, + pa(r — h)iy + adggy - E(Sﬂy (9.43d)

On the other hand, he, 7, f, and g, represent the first components of
vectors h, 1, f, and g, respectively, the other components being defined likewise.
Furthermore, §; and é, are defined as

H=EpP+@+(r-b0)’-aF
do=put+qu+(r—b)w
Upon substitution of g and 1, as given by eqs.(9.33b & d), respectively, into

€gs.(9.43¢ & d), and introduction of the definitions given in Table 9.1, it turns
out that both ¢; and 09 vanish identically, i.e.,

P1=0 and 92 =0

Also note that, in deriving expressions (9.43a & b) and (9.43¢c & d), we
assume that a; # 0. However, a; vanishes in many industrial robots, those
having their first two axes intersecting—usually at right angles—the foregoing
procedure thus becoming inapplicable. One way of coping with this case is to
go one step behind Raghavan and Roth’s procedure and redefine, for £ = 1, 2,

$i(63,04,05) «— a1¢x(83,04,05);

and
U — a1y

ie.,

Ll ™

— — — — —_—— 2 J— J—
$1(63,01,05) = ELE - e - 2F - B)T,] - H ok, + 1867,

—a1 141 (f pd H)z + a1/1,1w7y —ayp (r — bl)ﬁy (9.44a)

2
$2(03,04,05) = EL[F - DR, — 2(F- B)F,) — asa (F x B), — ey,

2
—_— — lj’Z —
+arpa(r — bi)hg + pidaf, — ——2—1—61hy (9.44b)
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(4

1 ¢ 2
—a1 A (8 X 0z + a1 pwg, — arpn (r — b))y (9.45a)

2
v = B@ 87 - 28 D7)~ ahm(E x )y
2
—a3 i wg, +ap (r — b1)ig + ,u,%éggy - %51% (9.45b)

Under their new definitions, apparently, ¥ and 5 also vanish. Once ¢; and
@2 are equated to zero, two equations are obtained that can be cast in the form

—I—‘2X45 = 02 (946)

or equivalently,
Dzyg = 02 (947)

where 0, is the 2-dimensional zero vector, T5 is a 2 x 9 matrix whose entries
are linear in x3, D5 is a 2 X 3 matrix whose entries are bilinear in x4 and xj,
and y3 was introduced in eq.(9.41).

The two eqs.(9.40a) and (9.46) thus involve a total of six scalar equations
free of 8; and 82, and can be combined to yield a system of six equations trilinear
in x3, x4, and x5, namely,

2)(45 = 06 (948&)

where X is a 6 X 9 matrix whose entries are linear in x3, and 0Og is the 6-
dimensional zero vector. Now, the tan-half trigonometric identities relating s;
and ¢; with 7; = tan(6;/2), for i = 4,5, are substituted into eq.(9.48a). Upon
multiplying the two sides of the equation thus resulting by (1 + 72)(1 + 72),
Raghavan and Roth obtained

/% = 0g (9.48b)

where X' is a 6 x 9 matrix that is linear in x3, while x}y is defined as

Xys = [1378 TETs TP TTE TTs T T8 T 1]T
If the same trigonometric identities, for i = 3, are now substituted into
eq.(9.48b), and then the first four scalar equations of this set are multiplied by
(14 72) to clear denominators, the equation thus resulting takes the form

2% = 06 (9.48¢)

In the above equations, X" is a 6 x 9 matrix whose first four rows are
quadratic in 73, while its last two rows are apparently rational functions of 73.
However, as reported by Raghavan and Roth, the determinant of any 6 x 6
submatrix of ¥” is, in fact, an 8th-degree polynomial in 73 and not a rational
function of the same. Moreover, in order to eliminate 74 and 75, they resort to
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dialytic elimination (Salmon, 1964), introduced in this book in Subsection 5.4.1
and in Exercise 5.10. Dialytic elimination is further discussed in Section 9.3,
in connection with the Li, Woernle, and Hiller method, and in Section 10.2 in
connection with parallel manipulators.

In applying dialytic elimination, the two sides of the system of equations
appearing in eq.(9.48¢c) are first multiplied by 74; then, the system of equations
thus obtained is adjoined to the original system, thereby deriving a system of
12 linear homogeneous equations in X435, namely,

Sikt4s = 012 (9.48d)

where 055 is the 12-dimensional zero vector, while the 12-dimensional vector X45
is defined as

< — 2 2.2 .2 2
e = [TaTE TiTs T3 TITE TiTs TS
(9.48¢)
TATE TaTs T4 2 o 117

Furthermore, the 12 x 12 matrix S is defined as

=[]

its 6 x 12 blocks G and K taking on the forms
G=[Z" O3], K=[0¢ Y]

with Qg3 defined as the 6 x 3 zero matrix.
Now, in order for eq.(9.48d) to admit a nontrivial solution, the determinant
of its coefficient matrix must vanish, i.e.,

det(S) =0 (9.49)

which is the characteristic equation sought. The foregoing determinant turns
out to be a 16th-degree polynomial in 73. Moreover, the roots of this polynomial
give the values of 73 corresponding to the 16 solutions of the IDP. It should be
noted that, using the same procedure, one can also derive this polynomial in
terms of either 74 or 75 if the associated vector in eq.(9.48d) is written as x35
or X34, respectively. Consequently, the entries of matrix 3 would be linear in
either x4 or Xxs.

9.3.2 The Li-Woernle-Hiller Procedure

At the outset, the factoring of Q; given in eq.(4.1¢) and the identities first used
by Li (1990), namely, eqs.(9.15b), are recalled. Additionally, Li defines a matrix
T; as
—Ti 1 0
T, = 1 7 0
0 0 1
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Hence,

Ti 1 0
TiCi EUi = 1 —T; 0
0 0 1

with C; defined in eq.(4.1b). Furthermore, we note that the left-hand sides of
the four vector equations (9.23a, b, e & f) are of the form Qsv, where v is
a 3-dimensional vector independent of f3. Upon multiplication of the above-
mentioned equations from the left by matrix T3, Li and co-authors obtained a
new set of equations, namely,

Usf = Tsg (9.50)
Usft = Tai (9.50b)
Us(f x #) = Ts(g x i) (9.50¢)
Us [(£- F = 2(F - W)f] = Ts (g - 8)i - 2(g - ] (9.50d)
where f and # are defined as
f' = A3(b3 + Q4by + Q4Q5b5) (9.51)
r= A3(Q4115) (952)

with A; defined, in turn, in eq.(4.1c).

Because of the form of matrices T3 and Ujs, the third of each of the four
vector equations (9.50a—d) is identical to its counterpart appearing in egs.(9.34a,
b, e & f). That is, if we denote by either v; or (v); the ith component of any
3-dimensional vector v, the unchanged equations are

f3=gs (9.53a)

g = i3 (9.53b)

(f x )3 = (g x i)3 (9.53¢)

(f-£)fs —2(f-h)fs = (g g)is — 2(g - )9 (9.53d)

all of which are free of 83. Furthermore, six additional equations linear in 73
will be derived by multiplying both sides of eqs.(9.53a—d) and of (9.23c & d) by
Ts, i.€.,

T3f3 = 1393 (9.54a)

733 = T313 (9.54b)

m3(f X £)3 = 73(g X i)3 (9.54c)

[(£- £)fs — 2(f - h) fs]s = 1[(g - 8)iz — 2(g - i)gs]3 (9.54d)
(- f)=73(g-g) (9.54e)

)

T3 (f . h) = Tg(g . i) (9.54f
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We now have 20 scalar equations that are linear in 73, namely, the 12
eqs.(9.50a—d) plus the six equations (9.54a—f) and the two scalar equations
(9.23¢c & d). Moreover, the left-hand sides of the foregoing 20 equations are
trilinear in 73, x4, and x5, while their right-hand sides are trilinear in 73, x1,
and x2. These 20 equations can thus be written in the form

Ax=p (9.55a)

where the 20 x 16 matrix A is a function of the data only, while the 20-
dimensional vector 3 is trilinear in 73, x3, and x., the 16-dimensional vector x
being defined, in turn, as
X = [T3¢4C5  T3C485 T354C5 T384Ss5 T3C4 T384 T3Cs T3S
C4Cy  C485 84C5 8485 C4 84 Cp 85]T (9.55b)

Next, matrix A and vector 3 are partitioned as

ae i) a=[g

where Ay is a nonsingular 16 x 16 matrix, A is a 4 x 16 matrix, vector 8y,
is 16-dimensional, and vector 3; is 4-dimensional. Moreover, the two foregoing
matrices are functions of the data only. Thus, we can solve for x from the first
16 equations of eq.(9.55a) in the form

X = Aalﬂu

Upon substituting the foregoing value of x into the four remaining equations of
eq.(9.55a), we derive four equations free of x, namely,

ALAG' By =B, (9.57)

In eq.(9.57) the two matrices involved are functions of the data only, while
the two vectors are trilinear in 73, X1, and x2. These equations are now cast in
the form

(AiCQ + B;sq + Ci)’Ts +Dico+E;so+ F; =0, 1=1,2,3,4 (9583)

where all coefficients A;, ..., F; are linear in x;. Next, Li and co-authors sub-
stitute ¢y and sy in the foregoing equations by their equivalents in terms of
To = tan(fz/2), thereby obtaining, for ¢ =1, 2, 3, 4,

Cii7'227'3 + 2B;To713 + A3 + EiTzz +2Em5+ Dy =0 (958b)

with the definitions

Ay = A+ Ci (9.58¢)
Cii = C; — Ay (9.58d)
Di=D;+F, (9.58¢)
F;=F,— D, (9.58f)
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Further, 72 and 13 are both eliminated dialytically from the four equations
(9.58a). To this end, both sides of all four equations (9.58b) are multiplied by
T2, which yields

CiityTs + 2Bim3 75 + Autats + Futy + 2Eim3 + Dygma = 0 (9.58g)

We have now eight equations that are linear homogeneous in the 8-dimensional
nonzero vector z defined as

2= [Ty TET3 T3 TT3 TE T3 T2 1]T (9.58h)
and hence, the foregoing 8-dimensional system of equations takes on the form
Mz=0 (9.59)
where the 8 x 8 matrix M is simply

F 0 Ci1 0 2B, Fi, Ay 2E;, Dip1
0 Chaa 0 2By Fyy Asy 2Es Do
0 Css 0 2By F33 Az 2FE3 Dajs
0 Cu 0 2By Fyy Ay 2By Dy

Cu 2By Fyu Ay 2E 0 Dy 0

Coa 2By Fyy Agy 2E; 0 Dys 0

C33 2Bs F33 Asz 2E3 0 D33 0

| Cys 2By Fyy A4y 2E4 0 Dy 0

2
i

J

Now, since z is necessarily nonzero, eq.(9.59) should admit nontrivial solu-
tions, and hence, matrix M should be singular, which leads to the condition
below:

det(M) =0 (9.60)

Thus, considering that all entries of M are linear in x;, det(M) is octic in
x1, and hence, eq.(9.60) is equally octic in x;. By virtue of Fact 9.2.2, then,
eq.(9.60) is of 16th degree in 71; this equation takes on the form

16
> aprf =0 (9.61)
0

which is the characteristic equation sought, its roots providing up to 16 real
values of 8, for the IDP at hand.

9.4 The Bivariate-Equation Approach

The difference between this approach and those leading to the univariate poly-
nomial, as outlined in Section 9.3, lies in three aspects: (z) only four, out of the
six original unknowns, are eliminated; (i) the tan-half identities are avoided, in
order to avoid polynomial deflation at or around values of 7, and to allow for
finding all real roots; and (7i¢) direct polynomial-root finding is avoided, rough
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estimates of all roots being found, first, by inspection, then refined by means of
a Newton procedure.

Now, to derive the bivariate equations, we have to eliminate three of the
five unknowns from the 14 fundamental closure equations. To this end, we
resort to eqs.(9.40b), which are trilinear in {x;}3. Furthermore, from definition
(9.41), y3 # 0, and hence, the 4 X 3 matrix D; of eq.(9.40b) must be rank-
deficient, which means that every one of its four—the number of combinations
of four objects taking three at a time—3 x 3 determinants, obtained by deleting
one of its four rows, should vanish. We need, in principle, only two of these
determinants to obtain two independent equations in 84 and 5. To be on the
safe side regarding spurious roots and formulation singularities®, we impose
the vanishing of all four possible determinants, which yields, correspondingly,
four contours in the §4-85 plane; the intersections of all contours then yield the
real (04,85) pairs of values which render D; rank-deficient. Each of the four
equations thus derived describes a contour C;, for ¢ = 1,2,3,4, in the 84-05
plane:

C,; : Fi(04,05) = 0, 1= 1,2,3,4. (962)

Note that, by plotting the four contours in a square of the §,-85 plane, of side
27, we ensure that no real solutions will be missed.

The intersection points can be detected visually by the user or, automati-
cally, by a suitable graphical user interface (GUI)®. Regardless of the detection
method, numerical code can be employed to refine each pair (64,85) of inter-
section coordinates to the desired accuracy. The well-known Newton-Raphson
method for nonlinear-equation solving, outlined in Section B.3, can be used
here. However, this method works for solving systems of as many equations as
unknowns. In our case, we end up with four nonlinear equations in only two un-
knowns. While, in principle, any two of those four equations can be used to solve
for the two unknowns, numerical roundoff error and the numerical conditioning
of the problem at hand, to be discussed in Subsection 9.4.1, will invariably lead
to different numerical solutions for different choices of those two equations. The
question then is which of the four distinct solutions to pick up. In order to avoid
this quandary, we suggest here to regard all four equations as independent, en-
tailing possible contradictions—roundoff errors may render the four equations
independent, which they aren’t. With this approach, then, rather than one
solution to the four equations, what we seek is their least-square approximao-
tion, which can be done using a method known as Newton-Gauss (Dahlquist
and Bjorck, 1974), as outlined in Section B.4. Alternatively, Matlab’s function
lsqnonlin can be used to find the same least-square approximation. In any

5 Formulation singularities occur when, in the absence of a kinematic singularity—
characterized by the vanishing of det(J), for J defined as in eq.(5.10b)—two or three contours
C; are tangent at an intersection. When this is the case, and a pair of functions (9.62) is chosen
to find their roots, whose contours are tangent, the numerical computation of the coordinates
of the intersection point becomes impossible.

5The intersection points appearing in Figs. 9.3 and 9.4 were obtained using the Matlab
GUI developed by Dr. Stephane Caro, a postdoctoral fellow at McGill University’s Robotic
Mechanical Systems Laboratory. The GUI is available in the CD accompanying this edition
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event, the problem is solved iteratively. Within the Newton-Gauss method, a
linear overdetermined system of equations is solved at each iteration, using one
of the methods of Section B.1.

In this way, two of the unknown joint angles, 84 and 85, are computed ac-
curately, the remaining four unknowns being determined uniquely, as described
in Section 9.6. Notice, however, that spurious solutions to the IDP are likely
to occur. These are intersections of the four contours which, although verifying
the four equations (9.62), fail to produce a full set of solutions {6;}$. The
computation of all remaining joint variables, 61, 62, 83 and 6g, once 84 and 05
are available, is the subject of Subsection 9.6.3.

9.4.1 Numerical Conditioning of the Solutions

We recall here the concept of condition number of a square matrix (Golub and
Van Loan, 1989), as introduced in Section 5.8. In this subsection we stress
the relevance of the concept in connection with the accuracy of the computed
solutions of the general IDP.

The concept of condition number of a square matrix is of the utmost impor-
tance because it measures the roundoff-error amplification upon solving a system
of linear equations having that matrix as coeflicient. The condition number of
a matrix, discussed in Section 5.8, can be computed in many possible ways. For
the purpose at hand, it will prove convenient to work with the condition number
defined in terms of the Frobenius norm, as given in egs.(5.80a & b).

In the context of the bivariate-equation approach, we can intuitively argue
that the accuracy in the computation of a solution is dictated by the angle at
which two contours giving a solution intersect. Thus, the solutions computed
most accurately are those determined by contours intersecting at right angles.
On the contrary, the solutions computed least accurately are those obtained by
tangent contours. We shall formalize this observation in the discussion below.

We distinguish between the condition number of a matrix and the condi-
tioning of a solution of a nonlinear system of equations. We define the latter as
the condition number of the Jacobian matrix of the system, evaluated at that
particular solution. More concretely, let

fi(z1,22) =0
fa(z1,22) =0

be a system of two nonlinear equations in the two unknowns z; and xs. More-
over, the Jacobian matrix of this system is defined as

F= [Eggm (9.63)

where V f;, denotes the gradient of function fi(z1, z2), defined in turn as

_ | 0f/0x:



370 9. Geometry of General Serial Robots

It is to be noted that multiplying each of the two given equations by a scalar
other than zero does not affect its solutions, each Jacobian row being, then,
correspondingly multiplied by the same scaling factor. To ease matters, we will
assume henceforth that each of the above equations has been properly scaled
so as to render its gradient a unit vector in the plane of the two unknowns. In
order to calculate the condition number of F, which determines the conditioning
of the solutions, we calculate first FF” and its inverse, namely,

_ 1 Vfii-Vfal _ | 1 cosy
FFT_[Vfl-Vfg l1 2]z[cos'y 1 }

and

—1 1 _
(FFT) S [ 1 cosv}
sin“y [— Cos 7y 1
where + is the angle at which the contours intersect. The condition number kF
of F, based on the Frobenius norm, can then be computed as

1

=, —-7<Ly< 9.65
P TETET (9.65)

which means that for the best possible solutions from the numerical conditioning
viewpoint, the two contours cross each other at right angles, whereas at singular
configurations, the contours are tangent to each other. The reader may have
experienced that, when solving a system of two linear equations in two unknowns
with the aid of drafting instruments’, the solution becomes fuzzier as the two
lines representing those equations become closer to parallel.

9.5 Implementation of the Solution Method

Whatever method is chosen to solve the IDP, the solution procedure will even-
tually require numerical computations. Indeed, both the univariate-polynomial
and the bivariate-equation approaches ultimately resort to a numerical proce-
dure to find either the roots of a polynomial equation that can be of up to 16th
degree or, correspondingly, the solutions of a system of trigonometric equations.
Now, formulas for the roots of polynomial equations are available only for the
quadratic, the cubic and the quartic polynomials®; those for the cubic and quar-
tic equations are so cumbersome that in practice they are seldom applied. The
Italian mathematician Ruffini gave a sketch of a proof in 1799 showing that
formulas for the roots of polynomials of fifth or higher degree are not possible
in general (Stillwell, 2002). Then, the Norwegian mathematician Abel, in 1826,
provided a more rigorous proof of the same result. Tt was the genius of the

7Graphical methods of mechanism analysis rely on this form of linear-equation solving.

8The Italian mathematicians Niccold Tartaglia—meaning the “stutterer,” his real name
believed to have been Fontana—(1535) and Girolamo Cardano (1545), independently, or so
each claimed, found the formula for the three roots of the cubic equation, now known as
Cardan’s formula. Ferrari’s formula—so named after the Italian mathematician Ludovico
Ferrari, a disciple of Cardano’s—provides the four roots of a quartic polynomial.
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French Evariste Galois (1811-1832) that, aided by Galois’ own theory of groups
(Livio, 2005), led to an elegant theory on the solvability of polynomial equations
that closed an important chapter in the history of mathematics.

Now, when numerically solving the equations involved, whether polyno-
mial or trigonometric, intermediate computations can yield coeflicients with
absolute values of disparate orders of magnitude, which is prone to numeri-
cal instabilities—ill-conditioning. These occur naturally in the neighborhood of
singularities, and cannot be avoided. Another source of ill-conditioning lies in
the data themselves. When working with two different sets of equations, one
representing point displacements, the other angular displacements, we end up
with a mixture of equations with physical units of length and equations that
are dimensionless. Such a mixture is a source of ill-conditioning, which can
be avoided without too much effort: we recommend to start by rendering the
point-displacement equations dimensionless, which can be done by dividing the
DH parameters { a;, b; }% introduced in Section 4.2 and the position vector p of
the EE operation point by the characteristic length L introduced in Section 5.8.
This stage, which can be termed normalization, is done in the numerical exam-
ples included in Section 9.7.

Furthermore, when refining the rough estimates of the contour intersections,
as occurring in the implementation of the bivariate-equation approach, we are
confronted with computing the least-square approximation to an overdetermined
system of nonlinear equations. This is a well-researched problem in the realm
of numerical analysis (Dahlquist and Bjorck, 1974). While effective methods
exist that solve the problem without resorting to gradients, we have used in the
solutions an in-house developed package of C routines, ODA, for a broad class
of problems occurring in mathematical programming®. In this library, we have
a routine, LSSNLS, that implements the Newton-Gauss algorithm described in
Section B.4. LSSNLS requires an initial guess xg for the unknown vector x as
well as information on the dimensions n of x, the number of unknowns, and of
f(x), the number of equations, m > n. Then, LSSNLS returns an optimum value
x* that best approximates the overdetermined system of equations f(x) = 0
in the least-square sense, and that is dependent on x¢. In the absence of ill-
conditioning, x* is the local optimum of the problem closest to the initial guess
xg. However, the Matlab GUI that was developed by Dr. Caro—see footnote 6—
to automate the refining of the visual estimates relies on Matlab’s 1sqnonlin
function. The method implemented in this function is direct, in that it is based
solely on function evaluations, thus obviating gradient computations.

9.6 Computation of the Remaining Joint Angles

So far we have reduced the system of displacement equations to either one sin-
gle univariate polynomial in the tangent of half one of the joint angles—the

9The ODA library is available on www.mcgill.ca/“rmsl/Angeles _html/courses/MECH577/.
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univariate-polynomial approach—or a system of bivariate trigonometric equa-
tions in the sines and cosines of two joint angles—the bivariate-equation ap-
proach. In either case, we still need a procedure to compute the remaining joint
angles, which is the subject of the balance of this section.

9.6.1 The Raghavan-Roth Procedure

The most straightforward means of computing 6, and 65 in this procedure is
€q.(9.48d), which can be interpreted as an eigenvalue problem associated with
the 12 x 12 matrix S, and has one known eigenvalue, namely, 0, for its sole vari-
able, 65, was computed so as to render S singular. Now, every scientific package
offers eigenvalue calculations, whereby the eigenvectors are usually produced in
a normalized form, i.e., with all eigenvectors computed as unit vectors. Let, for
example, ¢ be the 12-dimensional eigenvector of S corresponding to the zero
eigenvalue. In this case, ||o|| = 1, but %45, the solution sought, is obviously of
magnitude greater than unity, for its 12th component, 12, is exactly 1, accord-
ing to its definition, eq.(9.48¢). In order to produce %45 from o, then, all we
need is a suitable scaling of this vector that will yield (%45)12 = 1. We thus
have that 012 # 0—otherwise, egs.(9.48d) would be inconsistent—and hence,

J~C45 = —0
012
The outcome will be a set of unique values of 6, and 85 for each of the 16 possible
values of 83.
Next, 6; and @, are computed from eq.(9.35), which is rewritten below in a
more suitable form:
Rx12 = Xass (9.66a)

with the 14-dimensional vector Xs45 defined as
X345 = Pxus (9.66b)

Since R is a 14 x 8 matrix, eq.(9.66a) comprises 14 linear equations in the eight
unknown components of x12. Although any eight of the 14 equations (9.66a) suf-
fice, in principle, to determine x;2, we should not forget that these computations
will most likely be performed with finite precision, and hence, roundoff-error am-
plification is bound to occur. In order to keep roundoff errors as low as possible,
we recommend to use all the foregoing 14 equations and calculate x;5 as the
least-square approzimation of the overdetermined system (9.66a). This approxi-
mation will be, in fact, the solution of the given system because all 14 equations
are compatible. The least-square solution of this system yields, symbolically,

X129 = (ﬁTﬁ) _1ﬁTf345 (966C)

In practice, the foregoing least-square approximation is computed using an or-
thogonalization procedure (Golub and Van Loan, 1989), the explicit or the
numerical inversion of the product H”H being advised against because of its
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frequent ill-conditioning. Appendix B outlines the robust numerical computa-
tion of the least-square approximation of an overdetermined system of equations
using orthogonalization procedures. The only remaining unknown is 6, which
is computed below: This unknown is readily computed from eq.(4.9a). Indeed,
the first of the three vector equations represented by this matrix equation yields

Q:1Q2Q3Q4Qsps = q (9.67a)

where q denotes the first column of Q, while, according to eq.(9.5), ps denotes
the first column of matrix Qg, i.c.,

cos fg i1
pe = |sinfs |, q=|qu (9.67b)
0 31

Thus, eq.(9.67a) can be readily solved for pe, i.e.,

Ps = Q5 Q7 Q7 Q7 Qf q (9.68)

thereby obtaining a unique value for g for every set of values of {8 }. This
completes the solution of the IDP under study.

9.6.2 The Li-Woernle-Hiller Procedure

Once 6, is available, the remaining angles are computed from linear equations:
Equations (9.59) are first rearranged in nonhomogeneous form, namely,

Nz' =n (9.69)

with the 8 x 7 matrix N and the 7- and 8-dimensional vectors z' and n defined

as
r 0 Ci1 0 2By Fin A 2E;7

0 Co 0 2By Fyy Asn 2E,
0 Css 0 2B3 F33 Ajzy 2E;
0 Cu 0 2By Fy Ay 2E;
Cu 2By Fiy An 2E1 0 Dy

z
I

Coy 2By Fyy Asg 2E;, 0 Do
C33 2Bs F33 Ass 2E3 0 Dgs
LC44 2B4 F44 A44 2E4 0 D44_
and D
TST3 qu
) 22
3 33
T2
;o _ | Daa
Z =— | T273 | » n=
72 0
7'2 0
7'3 0
-2 L 0
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Now, eq.(9.69) represents an overdetermined linear algebraic system of eight
equations, but only seven unknowns. Again, we recommend here a least-square
approach to cope with ill-conditioning. In this way, the solution of eq.(9.69) can
be expressed symbolically in the form

7 = (NTN)"INTn

With z' known, both 7 and 73, and hence, 6, and 83, are known uniquely.
Further, with 6;, 6, and 63 known, the right-hand side of eq.(9.55a), 3, is
known. Since the coefficient matrix A of that equation is independent of the
joint angles, A is known, and that equation can be solved for vector x uniquely.
Once x is known, the two angles 4 and 85 are uniquely determined, with g
the sole remaining unknown; this can be readily determined, also uniquely, as
discussed in connection with the Raghavan-Roth method.

9.6.3 The Bivariate-Equation Approach

After all common intersections of the four foregoing contours have been deter-
mined, we have already two of the unknowns, 84 and 85, the remaining four
unknowns being calculated uniquely as described presently. First, we calculate
one of the remaining joint variables, 03, using eq.(9.40b). For this purpose,
we evaluate matrix Dy for all intersection points. Then, we rewrite the same
equation in the form

Hx; =7 (9.70a)

the 4 x 2 matrix H being obtained from D; by excluding its last column, which
is denoted by —1. Moreover, matrix H and the 4-dimensional vector 7 are both
bilinear in x4 and x5 and hence, known. Again, we use all four equations (9.70a)
at our disposal to compute the 2-dimensional vector x3 using a least-square
approach. If H is of full rank—its two columns are linearly independent—then
the solution can be expressed symbolically in the form

x3 = (HTH)"'HT r (9.70b)

However, if H is rank-deficient, i.e., if its two columns are linearly dependent,
then the inverse appearing in eq.(9.70b) cannot be computed, the solution
(64,05) being spurious. In fact, even if H is of full rank, the computed xj3
may fail to be a unit vector, as required by its definition. The outcome here is
that

cos? 03 +sin® 03 # 1

which means that the value of x3 computed from eq.(9.70a) will yield a complex
value of 83. In this case, the intersection (64, 65) at stake is spurious as well.
When H is of full rank and the computed x3 is of unit Euclidean norm,
€q.(9.70b) determines 83 uniquely for the given values of 84 and 95.
With 83, 64 and 85 known, we can now calculate 8, and 85 simultaneously
from eq.(9.27), which we reproduce below in a more suitable form

RX12 = X345 (971)
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Table 9.2: Rough estimates of the coordinates of the intersection points of the
Fanuc Arc Mate S series manipulator of 1990

Sol'n No. 1 2 3 4 5 6 7 8
04 (rad) 2.38 1.57 0.34 | —1.57 | —-3.06 | —2.39 | —1.57 | 1.57
05 (rad) —-297 | —1.57 | —1.79 | —1.57 | 1.7% 2.97 1.57 | 1.57

where R is a 14 x 8 matrix depending only on the problem data, while x345,
defined as
X345 = PX45 (972)

is a 14-dimensional vector trilinear in x3, x4, and X5, and is hence, known.
Moreover, matrices P and R as well as vectors x;2 and x45 were defined in
€qs.(9.27) and (9.28a & b). Again, we have an overdetermined system, of 14
equations, in eight unknowns this time, which can best be solved for x12 using a
least-square approach with an orthogonalization procedure. The unique solution
of the overdetermined system at hand can thus be expressed as

x12 = (RTR) 'R x345 (9.73)

Note that the solution thus obtained determines x; and x2 uniquely, the only
remaining unknown being g, which is computed as in eq.(9.68).

9.7 Examples

We solve the examples below using the bivariate-equation approach with the
purpose of both helping the reader visualize the real solutions and avoiding the
formulation singularities brought about by the tan-half identities!®.

Example 9.7.1 Find all inverse-displacement solutions of the Fanuc Arc Mate
S series manipulator of 1990 for the end-effector pose given below:

01 0 130
Q=(0 0 1|, p=1 850
1 00 1540

in which p is given in mm, the DH parameters of the robot being given in
Table 5.2.

Solution: For starters, we divide the DH parameters {a;, b;}$ and vector p
by L = 351.23 mm, the characteristic length of this manipulator found in Sec-
tion 5.8. In following the bivariate-equation approach, we plot the four contours

10The accompanying CD includes a GUT allowing the user to automate the computation of
accurate values of the joint variables by clicking at the visual estimates of the intersections of
all four contours.
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Table 9.3: Refined estimates of the coordinates of the eight intersection points

9. Geometry of General Serial Robots

of Fig. 9.3
Inters’n No. 84 (rad) 05 (rad)
1 2.381637539 | —2.973100582
2 1.570796327 | —1.570796327
3 0.344592933 | —1.797513978
4 —1.570796327 | —1.570796327
5 —3.060229795 1.755742649
6 —2.397512950 2.972311705
7 —1.570796327 1.570796327
8 1.570796327 1.570796327

Table 9.4: Legitimate solutions of the inverse displacement of the Fanuc Arc
Mate S series manipulator of 1990 at the given pose

Sol’n No. 1 3 5 6
64 136.457° 19.743° | —175.338° | —137.367
Os —170.346° | —102.989° 100.596° 170.300

in the 04-85 plane guaranteeing that matrix D of eq.(9.40b) is rank-deficient.
The four contours are superimposed in Fig. 9.3, where, apparently, we can de-
tect eight intersections. The coordinates (84, 85) of each intersection point are
first estimated by inspection, as listed in Table 9.2. Further, we submit each
of these eight values as an initial guess to the Newton-Gauss procedure—or
Matlab’s function lsqnonlin—to find the least-square approximation of the
overdetermined system of four equations in two unknowns of eq.(9.62). The
eight solutions thus found are then used to compute x3 of €q.(9.70a). As it
turned out, solutions 2, 4, 7 and 8 led to a rank-deficient H, and were, thus,
discarded as spurious. For the record, we include all eight least-square solutions
found in radians, in Table 9.3.

The legitimate solutions are displayed in Table 9.4, in degrees for easier
visualization. The robot thus admits four real inverse displacement solutions at
the given pose. The values of the remaining angles are recorded in Table 9.5.

Example 9.7.2 Here we include an example of a manipulator admitting 16 real
inverse displacement solutions. This manipulator was proposed by Li (1990), its
Denavit-Hartenberg parameters appearing in Table 9.6.
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03 N rad

Figure 9.3: Contours C1, Ca, C3, and C4 for the Fanuc Arc Mate S series manip-
ulator of 1990

Table 9.5: Remaining angles corresponding to the solutions of Table 9.4

Sol’n No. 6 ['N 63 Os
1 83.366° | 90.974° | —8.004° 43.134°
3 70.781° | 15.151° | 151.077° 175.387°
5 85.417° | 16.156° | 153.212° —0.859°
6 83.447° | 87.898° 9.268° —42.221°

Table 9.6: DH parameters of Li’s manipulator

1 | a; (m) | b; (m) a; | 0;
1 0.12 0| —57° | 6
2 1.76 0.89 35° | 62
3| 0.07 0.25 95° | 83
4] 088 —-0.43 79° | 04
51 039 0.50 | —75° | 65
6| 093 —1.34 | —90° | 06
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Solution: The foregoing procedure was applied to this manipulator for an end-
effector pose given as

—0.357279 —-0.850000 0.387106 0.798811
Q= 0915644 -0.237000 0.324694 |, p= |—0.000331
—0.184246  0.470458 0.862973 1.200658

where p is given in meters. Again, we start by dividing {a;,b;}$ and vector p
by the characteristic length L, that was found to be L = 890.1 mm.

85 [rad] oF

-1f
—2F

._.3_

Figure 9.4: Contours Cy, Ca, Cs, and C4 for the Li manipulator

The four contours obtained with the bivariate-equation approach are super-
imposed in Fig. 9.4, where, apparently, we can detect 18 intersections. This
means that at least two are spurious, for the number of inverse-displacement
solutions can be, at most, 16. In this figure, intersections 12 and 13 appear
as one single point. A zoom-in revealed two neighboring solutions in a region
around the said single point. The coordinates (64, 85) of each intersection point
are first estimated by inspection, as listed in Table 9.7. Further, we submit
each of these 18 values as the initial guess for the Newton-Gauss procedure—
or Matlab’s function 1sqnonlin—to find the least-square approximation of the
overdetermined system of four equations in two unknowns of eqs.(9.62). We
used ODA to compute the least-square approximation sought, and verified the
result with 1sqnonlin. For the record, we include all 18 solutions found, with
14 digits, in radians, in Table 9.8. The 18 solutions thus found were then used
to compute x3 of q.(9.70a). As it turned out, solutions 6 and 14 led to values
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Table 9.7: Rough estimates of the coordinates of the intersection points of Li’s
manipulator

Sol'n No. 1 2 3 4 5 6 7 8 9

64 (rad) | —0.56 | —1.88 | —2.09 | —2.59 | —3.07 | —1.62 | —0.72 | 2.09 | 2.75
05 (rad) | —3.01 | —2.71 | —2.54 | —2.25 0.21 1.75 2.86 | 3.08 | 2.5

Sol’'n No. 10 11 12 13 14 15 16 17 18

04 (rad) | 2.54 2.36 0.08 011 | -1.22 | -2.16 | —0.36 1.17 0.44
85 (rad) | 2.37 | —0.89 | —2.23 | —2.25 | —2.51 | —0.50 | —0.70 | —0.18 | —0.12

of Eucledian norm of vector x3 greater than unity, and were, thus, discarded
as spurious. The robot thus admits 16 real inverse displacement solutions at
the given pose. The legitimate solutions are displayed in Table 9.9, the val-
ues of the remaining angles being displayed in Table 9.10, in degrees for easier
visualization.

Example 9.7.3 In this example, we discuss the IDP of DIESTRO, the isotropic
siz-azis orthogonal manipulator shown in Fig. 5.15 (Williams et al., 1993). For
a meaning of kinematic isotropy, we refer the reader to Section 5.8. This manip-
ulator has the DH parameters given in Table 5.1. The pose of the end-effector
leading to an isotropic posture, i.e., one whose Jacobian matriz is isotropic, s
defined by the orthogonal matriz Q and the position vector p displayed below:

0 -1 0 0
Q=0 0 -1|, p=/[-50
1 0 0 50

with p given in mm. Compute all real inverse displacement solutions at the
given pose.

Solution: The characteristic length of DIESTRO was found in Section 5.8 to be
equal to the common value a; = b; = 50 mm, for i = 1,...,6. This manipulator,
at the given pose of the EE, exhibits a self-motion, proper of redundant ma-
nipulators, but not expected in a six-revolute robot. A self-motion occurs when
a manipulator has the ability to move all its joints while keeping its EE fixed
at one given pose. This feature makes the procedure of Section 9.4 difficult to
apply'!. We resort, hence, to an alternative approach: We go back to eq.(9.27)
and partition it into two sets of equations:

Puxys = Ryxao

Pixys = Ryxqa

1 The self-motion is not readily detected by contour-intersection using this procedure.

(9.74a)
(9.74b)
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Table 9.8: Refined estimates, to 14 digits, of the coordinates of the 18 intersec-

tion points of Fig. 9.4

Inters'n No. 04 (rad) 05 (rad)
1 —0.5656865073441 | —3.0127341939867
2 —1.8817916819320 | —2.7181441928227
3 —2.0982054358488 | —2.5458222487325
4 —2.5943879129109 | —2.2563308501840
5 —3.0760703821644 0.2173802902678
6 —1.6227073591253 1.7564609766664
7 —0.7268312801527 2.8637219341062
8 2.0991093946626 3.0822214487834
9 2.7591234998160 2.5875200635823
10 2.5458806726888 2.3797734576690
11 2.3681644908739 | —0.8961886662259
12 0.0834264321499 | —2.2306893314165
13 0.1144843294210 | —2.2536422392721
14 —1.2262527241259 | —2.5145351139614
15 —2.1620940322382 | —0.5098897084087
16 —0.3665297041826 | —0.7057880105554
17 1.1793192137176 | —0.1889758121252
18 0.4440232934648 | —0.1282084013846

where P, and P; are 6 X 9 and 8 x 9 submatrices of P. Likewise, R,, and R, are
the corresponding 6 x 8 and 8 x 8 submatrices of R.. In the above partitioning,
the equations must be grouped such that R; be nonsingular. Using eqs.(9.74a
& b), six scalar equations free of #; and €2 can be derived, namely,
T =P, - R,(R;'P)

FX45 = 06 ) (975)

where 0Og is the 6-dimensional zero vector. Since the entries of the 6 x 9 matrix
T are all linear in x3, the entry in the ¢th row and jth column of the foregoing
matrix, <;;, can be expressed in the form

7ij=a¢jC3+bij33+c,-j; 1=1,...,6; 7=1,...,9 (976)
In the above expression, coefficients a;;, b;;, and c¢;; are independent of the
joint variables. Using eq.(9.76), we can expand eq.(9.75) and then rearrange

the terms in the ¢th equation, thus obtaining

Ases + Biss +C; =0 1=1,...,6 (977&)

where, for i = 1,...,6, we have

A; = 0418485 + 02845 + Q33485 + G4C4C5 + Q3584 + GigCa

+ai785 + Ai8Cs + Qg (9.77b)
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Table 9.9: Legitimate solutions of the inverse displacement of Li’s manipulator
at the given pose

Sol'n No. 04 05 Sol’n No. 64 s
1 —107.81° | —155.73° 9 —21.00° —40.43°
2 120.25° 176.59° 10 6.55° —-129.12°
3 4.77° | —127.80° 11 135.68° 135.68°
4 158.09° 148.26° 12 25.44° —7.34°
5 —4.16° 164.07° 13 —-176.07° 11.57°
6 ~120.21° | —145.86° 14 67.57° —-10.82°
7 —32.41° —-172.61° 15 —123.87° —29.21°
8 145.86° 136.35° 16 —148.64° | —148.64°

B; = bi15485 + biasacy + biscass + bjacacs + bisss + bigcy

+birss + bigcs + big (9.77¢)
C; = €;15485 + €284C5 + €3C485 + €i4C4C5 + Ci584 + CigCy
Fcir85 + CigCs + Cig (9.77d)

Now the six scalar equations (9.77a) are cast in vector form as
Dy; = 06 (9.78)

In the above equation, D is a 6 x 3 matrix whose entries are bilinear in x4 and
X5, while y3 was defined in eq.(9.41). Now, to eliminate 83, we realize that, from
its definition, y3 # 0, and hence, D must be rank-deficient. This means that
every one of its 20 3 x 3 determinants, obtained by picking up three of its six
rows at a time, should vanish—the number of combinations of six objects taking
three at a time is 20. We need, in principle, only two of these determinants to
obtain two independent equations in 64 and 65. Actually, to be on the safe side,
we should impose the vanishing of all 20 possible determinants, which would
yield, correspondingly, 20 contours in the 64-85 plane; the intersections of all
contours would then yield the real (84, 85) pairs of values which render D rank-
deficient. Nevertheless, the visualization of the intersections of all 20 contours
would be physically impossible, and so, we have to compromise with a smaller
number. As we have experienced, only two of the above determinants are prone
to yield spurious solutions, for which reason we pick up a reduced number of
determinants and derive three equations in 84 and 5.

We produce the three desired equations by first partitioning the 6 x 3 matrix
D of eq.(9.78) into two 3 x 3 blocks, D,, being the upper, D; the lower block,
which thus yields

Ay =det(Dy,), As = det(Dy)



382 9. Geometry of General Serial Robots

Table 9.10: Remaining angles corresponding to the solutions of Table 9.9

Sol'n

No. 61 G2 63 G5
1 174.083° | —163.302° | —164.791° 141.281°
2 —159.859° | —159.324° | —111.347° 21.654°
3 164.800° | —154.290° —85.341° | —101.359°
4 —148.749° | —179.740° —78.505° 55.719°
5 —16.480° -10.747° -58.894° 5.677°
6 —46.014° —19.256° —46.988° | —114.768°
7 —22.260° —22.431° —32.024° —17.155°
8 —53.176° 26.165° 9.103° 127.978°
9 —173.928° 150.697° 47.811° —92.284°
10 —41.684° —29.130° 52.360° 25.091°
11 —137.195° | —156.920° 68.306° 147.446°
12 —139.059° 128.112° 96.052° | —119.837°
13 —22.696° 29.214° 98.631° 170.303°
14 —83.094° 57.022° 130.976° | —110.981°
15 1.227° —7.353° 142.697° 149.208°
16 177.538° | —148.178° 159.429° 110.984°

Now, since the determinant is not additive, i.e., det(D, + D;) # det(D,) +
det(DD;), we choose Az as

Az = det(D,, + Dy)

which is apparently independent of A; and A, thereby obtaining three deter-
minants*?, which, when equated to zero, yield three independent equations in
04 and 85. Each of these equations describes a contour C;, for 4 = 1,2, 3, in the
0,-05 plane, i.e.,

Ci: F;(04,85)=0, i=1,2,3 (9.79)

Note that, by plotting the three contours in the —7 < 8; < 7 region, for ¢ = 4, 5,
we ensure that no real solutions will be missed.

The three contours thus obtained are plotted in Fig. 9.5(a). As this figure
shows, the three contours intersect at two isolated points, those labeled 1 and
2. The contours also intersect along a curve labeled SS in the same figure,
which thus represents a manifold of singular solutions; this means that DIE-
STRO admits a set of self-motions. These motions can be explained by noticing
that when the end-effector is located at the given pose and the manipulator is
postured at joint-variable values determined by any point on the SS curve, the
six links form a Bricard mechanism (Bricard, 1927). The degree of freedom of
a Bricard mechanism cannot be determined from the well-known Chebyshev-
Griibler-Kutzbach formula (Angeles, 2005), which yields a dof = 0. Here, the

12This idea was proposed by Dr. Kourosh Etemadi Zanganeh, CANMET (Nepean, Ontario,
Canada).
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05 (rad)

64 (ra.d)

Figure 9.5: Contours C;, Cg, and C3 for the DIESTRO manipulator at given
pose.

Table 9.11: Inverse displacement solutions of the DIESTRO manipulator

Solution No. 6; 8: A 04 0 O
1 0° 90° —90° 90° —90° | 180°
2 180° | —90° 90° —90° 90° 0°

single-dof motion of the mechanism occurs because the six revolute axes are laid
out in such a way that if they are grouped in two alternating triads, then these
triads intersect.

Furthermore, contours C; and C; intersect at right angles at solution 1, which
corresponds to the isotropic posture of the robot. The numerical values of the
joint variables for the isolated solutions are given in Table 9.11.

This example shows interesting features of the manipulator IDP which are
not present in manipulators with simpler architectures, such as those with in-
tersecting or parallel consecutive axes.

Moreover, the point of coordinates 84 = 85 = 7 /2 of Fig. 9.5 appears to be an
intersection of the three contours, and hence, a solution of the IDP at hand. A
close-up of this point, as displayed in Fig. 9.6(a), shows that this point is indeed
an intersection of all three contours, but this point is, in fact, a double point,



384 9. Geometry of General Serial Robots

109

100 .
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95

90 [

61 (deg) (a) 04 (deg) (b)

Figure 9.6: A close-up of: (a) the apparent contour intersection at the point
of coordinates 8, = 85 = w/2 (90°); and (b) the apparent contour intersection
southwest of solution 2.

i.e., a point at which each contour crosses itself; this gives the point a special
character: When verifying whether this point is a solution of the problem under
study, we tried to solve for x3 from eq.(9.70a), but then found that matrix H of
that equation vanishes, and hence, does not allow for the calculation of x3. An
alternative approach to testing the foregoing values of 84 and 65 is described in
Exercise 9.5. In following this approach, it was found that these values do not
yield a solution, and hence, the intersection point is discarded.

One more point that appears as an intersection of the three contours is that
southwest of solution 2. A close-up of this point, as shown in Fig. 9.6(b), reveals
that the three contours do not intersect in that region. In summary, then, the
manipulator at hand admits two isolated inverse-displacement solutions at the
given pose and an infinity of solutions along the curve SS.

9.8 Exercises

9.1 Show that the left-hand side of eq.(9.23f) represents a pure reflection of
vector h about a plane of unit normal f/||f||, if multiplied by [|/f||?. Also
show that the right-hand side of the same equation represents a pure
reflection of vector i about a plane of unit normal g/||g||, if multiplied by

lglf.
9.2 Show that ¢ and 1), as defined in egs.(9.43c & d) both vanish.

9.3 In this exercise, we will try to gain insight into the consequence of the
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94

9.5

9.6

9.7

double point at 84 = 85 = 7/2 of Fig. 9.5 of Example 9.7.3. To this end,
show that, for this combination of values, matrix H of eq.(9.70a) becomes
zero, and hence, x3 cannot be computed from this equation. As a result,
none of the remaining angles can be computed recursively.

As an alternative approach to the 14 fundamental equations derived in
Section 9.2, we recall eqs.(9.16a & b), if written in a more convenient
form, so as to have a minimum number of matrix multiplications, namely,

QsQ:Qs = Q7 QT QQJ
QI Qi (a1 —p) +Qf az + az + Qsay
4+ Q3Quas + Q3Q4Qza6 =0

Now equate the four linear invariants of the two sides of the first of the
two foregoing equations. The result is a set of four scalar equations. When
the translational equations are expanded, and appended to the first four
equations, a system of seven trigonometric equations in the six unknown
angles is derived. Obtain that system of seven equations and comment on
their suitability to solve the IDP.

In Section 9.6 we realized that, upon applying the Raghavan-Roth elimina-
tion method, and once 83 is computed, 84 and 85 can be computed at once
by finding the eigenvector of S associated with its zero eigenvalue. While
this calculation can be performed with the eigenvalue-computation mod-
ule of any scientific package, computing the eigenvalues of a 12 x 12 matrix
like S requires an iterative procedure, which can be time-consuming, es-
pecially if this computation is only a part of a more complex procedure.

In order to find X45, and hence, 84 and 85, from eq.(9.48d), we need not
resort to a full eigenvalue problem. Instead, a vector v can be computed
directly, as opposed to iteratively, that spans the nullspace of S, for a
given computed value of 83, if a change of variables is introduced that will
vield S in upper-triangular form. In fact, since S is a fortiors singular, its
last row is bound to have zero entries in that form. Devise an algorithm
that will render S in upper-triangular form and hence, compute vector
X45 under the conditions that this vector (a) lie in the nullspace of § and
(b) its 12th entry be unity. Hint: Apply an orthogonalization procedure,
as described in Appendiz B.

With reference to Example 9.7.3, keep the EE of DIESTRO fixed to the
manipulator base at the given pose, thereby forming a 6R closed kinematic
chain. Find the singularity locus SS of Fig. 9.5 by means of a kinematic
input-output analysis of the closed chain, which turns out to be a Bricard
mechanism.

Using the rough estimates displayed in Table 9.2, Example 9.7.1, compute
refined estimates of the coordinates of intersection point 4 upon solving the
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four equations (9.62) pairwise by means of the Newton-Raphson method.
Compute the condition number of each solution based on the Frobenius
norm of the 2 x 2 Jacobian F of eq.(9.63). Comment on your result.

9.8 Write a procedure to compute matrix S of the Raghavan-Roth method.
Then, evaluate this matrix at solutions 7 and 8 of Example 9.7.1.

9.9 Derive expressions for vectors f, g, h and 1 of eqs.(9.33a~d).

9.10 Derive an expression for I'y, and hence, one for I'yx45 of eq.(9.40a).



Chapter 10

Kinematics of Alternative
Robotic Mechanical
Systems

10.1 Introduction

The study of robotic mechanical systems has focused, so far, on serial manip-
ulators. These are the most common systems of their kind, but nowadays by
no means the majority. In recent years, other kinds of robotic mechanical sys-
tems have been developed, as outlined in Chapter 1. Under alternative robotic
mechanical systems we understand here: ) parallel robots; (i¢) multifingered
hands; (4i¢) walking machines; and (iv) rolling robots. A class that is increas-
ingly receiving attention, humanoids, portrays an architecture inspired from the
human musculo-skeletal system. This class deserves a study on its own because
of the host of control problems that it poses to the roboticist; its kinematics,
however, can be studied with the tools developed in this chapter for the first
three kinds of systems listed above. For this reason, a section on humanoids is
not included here.

Moreover, under the general heading of kinematics, we study in this chapter
the geometry and velocity relations between the sets of joint and Cartesian
variables. For the sake of brevity, however, we leave aside the statics of these
systems. The reader should be able to derive these relations from the duality
between kinematics and statics, as outlined in Chs. 3 and 5. Some exercises in
this regard are included in this chapter.
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10.2 Kinematics of Parallel Manipulators

Unlike serial manipulators, their parallel counterparts are composed of kine-
matic chains with closed subchains. A fairly general parallel manipulator is
shown in Fig. 10.1, in which one can distinguish two platforms, one fixed to the
ground, B, and one capable of moving arbitrarily within its workspace, M. The
moving platform is connected to the fixed platform through six legs, each being
regarded as a six-axis serial manipulator whose base is B and whose end-effector
is M. The whole leg is composed of six links coupled through six revolutes.

Figure 10.1: A general six-dof parallel manipulator

The robotic architecture shown in Fig. 10.1 is, in fact, too general, and of
little use as such. A simpler and more practical parallel architecture, which is
used as a flight simulator, is sketched in Fig. 10.2a. In this figure, the fixed
platform B is a regular hexagon, while the moving platform M is an equilateral
triangle, as depicted in Fig. 10.2b. Moreover, B is connected to M by means of
six serial chains, each comprising five revolutes and one prismatic pair. Three
of the revolutes bear concurrent axes, and hence, constitute a spherical joint,
similar to the wrists studied in Section 4.4, while two more have axes intersecting
at right angles, thus constituting a universal joint. Of the six foregoing joints,
only one, the prismatic pair, is actuated.

It is to be noted that although each leg of the manipulator of Fig. 10.2a has
a spherical joint at only one end and a universal joint at the other end, we rep-
resent, each leg in that figure with a spherical joint at each end. Kinematically,
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(b)

Figure 10.2: A six-dof flight simulator: (a) general layout; (b) geometry of its
two platforms

the leg depicted in Fig. 10.2a is equivalent to the actual one, the only difference
being that the former appears to have a redundant joint. We use the model of
Fig. 10.2a only to make the drawing simpler. A more accurate display of the
leg architecture of this manipulator appears in Fig. 10.3.

Because the kinematics and statics of parallel manipulators at large are be-
yond the scope of this book, we will limit the discussion to parallel manipulators
of the simplest type.

With regard to the manipulators under study, we can also distinguish be-
tween the inverse and the direct kinematics problems in exactly the same way
as these problems were defined for serial manipulators. The inverse kinematics
of the general manipulator of Fig. 10.1 is identical to that of the general serial
manipulator studied in Section 9.2. In fact, each leg can be studied separately
for this purpose, the problem thus becoming the same as in that section. For
the particular architecture of the manipulator of Fig. 10.2a, in which the actu-
ated joint variables are displacements measured along the leg axes, the inverse
kinematics simplifies substantially and allows for a simple closed-form solution.
However, the direct kinematics of the same manipulator is as challenging as
that of the general serial manipulator of Section 9.2. With regard to the direct
kinematics of manipulators of the type depicted in Fig. 10.2a, Charentus and
Renaud (1989) and Nanua et al. (1990) showed independently that like the in-
verse kinematics of general six-axis serial manipulators, the direct kinematics
of this manipulator reduces to a 16th-degree polynomial. Note, however, that
the direct kinematics of a manipulator similar to that of Fig. 10.2a, but with
arbitrary locations of the attachment points of each leg to the moving and fixed
platforms, termed the general platform manipulator, has been the subject of
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intensive research (Merlet, 2000). A breakthrough in the solution of the di-
rect kinematics of platform manipulators of the general type was reported by
Raghavan (1993), who resorted to polynomial continuation, a technique already
mentioned in Section 9.2, for computing up to 40 poses of M for given leg
lengths of a parallel manipulator with legs of the type depicted in Fig. 10.3,
but with attachment points at both M and B with an arbitrary layout. What
Raghavan did not derive is the characteristic 40th-degree polynomial of the gen-
eral platform manipulator. Independently, Wampler (1996) and Husty (1996)
devised procedures to derive this polynomial, although Wampler did not pur-
sue the univariate polynomial approach and preferred to cast the problem in
a form suitable for its solution by means of polynomial continuation. Husty
did derive the 40th-degree polynomial for several examples. In the process, he
showed that this polynomial is the underlying characteristic polynomial for all
manipulators of the platform type, which simplifies to a lower-degree polyno-
mial for simpler architectures. As a matter of fact, Lee and Roth (1993) solved
the direct kinematics of platform manipulators for which the attachment points
at the base and the moving platforms are located at the vertices of planar,
similar hexagons. These researchers showed that the problem here reduces to
a cascade of quadratic and linear equations. In the particular case in which
both polygons are regular, however, the manipulator degenerates into a mov-
able structure, upon fixing the leg lengths, and hence, the solution set becomes a
continuum. Lazard and Merlet (1994), in turn, showed that the platform manip-
ulator originally proposed by Stewart (1965), and known as the Stewart-Gough
platform, has a 12th-degree characteristic polynomial. Interestingly, these me-
chanical systems were first introduced by Gough (1956-1957) for testing tires;
Stewart (1965) suggested their use as flight simulators, an application that is
now well established.

Husty, however, did not show that his 40th-degree polynomial is minimal in
that manipulator architectures are possible that exhibit up to 40 actual solu-
tions. Dietmaier (1998) did this, by devising an algorithm that would iteratively
increase the number of real solutions of a given architecture. With this paper,
Dietmaier proved conclusively that Husty’s 40th-degree polynomial is, in fact,
minimal. This was rather surprising, for virtually everybody working in the
field expected a minimal polynomial of a degree of the form 2", with n being a
positive integer. Notice that, in the cases of the most general serial six-revolute
manipulator and of the flight simulator, the minimal polynomial is of a degree
of this form, with n = 4.

Below we analyze the inverse kinematics of one leg of the manipulator of
Fig. 10.2a, as depicted in Fig. 10.3. The Denavit-Hartenberg parameters of the
leg shown in this figure are given in Table 10.1. It is apparent that the leg
under study is a decoupled manipulator. Its inverse kinematics can be derived
by properly modifying the scheme introduced in Section 4.4, for we now have
a prismatic joint, which is, in fact, the only active joint of this manipulator.
Moreover, by virtue of the underlying design, the active joint variable, b3, can
take on only positive values.
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Figure 10.3: A layout of a leg of the manipulator of Fig. 10.2

In view of the DH parameters of this manipulator, eq.(4.16) reduces to

Q1Q2(a3 +a4) =c (10.1)

where ¢ denotes the position vector of the center C of the spherical wrist and,
since frames F3 and J; of the DH notation are related by a pure translation,
Q3 = 1. Upon equating the squares of the Euclidean norms of both sides of the
foregoing equation, we obtain

llas + a4|* = [|c]® (10.2)
where, by virtue of the DH parameters of Table 10.1,
llas + a4|* = (b3 + b4)?

Now, since both b3 and b4 are positive by construction, eq.(10.2) readily leads
to the desired inverse kinematics solution, namely,

by = ”C” —by>0 (103)

a result that could have been derived by inspection of Fig. 10.3.

Note that the remaining five joint variables of the leg under study are not
needed for purposes of inverse kinematics, and hence, their calculation could be
skipped. However, in studying the differential kinematics of these manipulators,
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Table 10.1: DH Parameters of the leg of Fig. 10.3

1 a; bi (o}
1 0 0 90°
2 0 0 90°
3 0 b3 0°
4 0 by (const) 90°
5 0 0 90°
6 0 b (const) 0°

these variables will be needed; it is thus convenient to solve for them now. This
is straightforward, as shown below: Upon expansion of eq.(10.1), we derive three
scalar equations in two unknowns, #; and 85, namely,

(bs + ba)s2 = zger + yost (10.4a)
—(bz + bs)ea = 2¢ (10.4b)
0=2zcs1 —ycer (10.4¢)

in which ¢; and s; stand for cos8; and sin 8,, respectively, while b3, occurring in
the above equations, is available in eq.(10.3). From eq.(10.4c), 84 is derived as

6, =tan~! (261) (10.5a)

zc

which yields a unique value of 8; rather than the two lying « radians apart, for
the two coordinates z¢ and yo determine the quadrant in which 6y lies. Once
61 is known, 6, is derived uniquely from the remaining two equations through
its cosine and sine functions, i.e.,

2c _ Zgl +yosy

= ——5—, =
2 bs + by 52 bs + by

(10.5b)
With the first three joint variables of this leg known, the remaining ones, i.e.,
those of the “wrist,” are calculated as described in Subsection 4.4.2. Therefore,
the inverse kinematics of each leg admits two solutions, one for the first three
variables and two for the last three. Moreover, since the only actuated joint
is one of the first three, which of the two wrist solutions is chosen does not
affect the value of b3, and hence, each manipulator leg admits only one inverse
kinematics solution.

While the inverse kinematics of this leg is quite straightforward, its direct
kinematics is not. Below we give an outline of the solution procedure for the
manipulator under study that follows the procedure proposed by Nanua, et al.
(1990).

In Fig. 10.2a, consider the triangles A;S;B;, for i = 1,2, 3, where the sub-
script ¢ stands for the ith pair of legs. When the lengths of the six legs are fixed
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Figure 10.4: Equivalent simplified mechanism

and plate M is removed, triangle A;S;B; can only rotate about the axis A;B,;.
Therefore, we can replace the pair of legs of lengths ¢;, and g;; by a single leg of
length I;, connected to the base plate B by a revolute joint with its axis along
A;B;. The resulting simplified structure, as shown in Fig. 10.4, is kinematically
equivalent to the original structure in Fig. 10.2a.

Now we introduce the coordinate frame F;, with origin at the attachment
point O; of the ith leg with the base plate B, according with the geometry of
Fig. 10.4 and the notation below:

Fori=1,2,3,
X; is directed from A; to Bj;

Y; is chosen such that Z; is perpendicular to the plane of the hexagonal base
and points upwards.

O; is set at the intersection of X; and Y;, and is designated the center of the
revolute joint;

Next, we locate the three vertices Sy, Sa, and S3 of the triangular plate with
position vectors stemming from the center O of the hexagon. Furthermore, we
need to determine [; and O;. Referring to Figs. 10.4 and 10.5, and letting a;
and b; denote the position vectors of points A; and B;, respectively, we have

d; = [|b; — ag|
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u;
B;

Figure 10.5: Replacing each pair of legs with a single leg

_d?+qz2a_q12b

T T g
li= qz?a - ’T‘?
bi - a;
; = —
H d'i

for i = 1,2, 3, and hence, u; is the unit vector directed from A; to B;. Moreover,
the position of the origin O; is given by vector o;, as indicated below:

o0; = a; + ryuy, for i =1,2,3. (10.6)

Furthermore, let s; be the position vector of S; in frame F;(O;, X;, Vi, Z).
Then
0

s;= | —ljcosd; |, fori=1,2,3 (10.7)
li sin ¢i

Now a frame F, (0, X, Y, Z) is defined with origin at O and axes X and
Y in the plane of the base hexagon, and related to X; and Y; as depicted in
Fig. 10.6. When expressed in frame Fy, s; takes on the form

[Si]O = [01' ]0 + [Ri]osi, for i = 1, 2,3 (108)

where [R;]o is the matrix that rotates frame Fy to frame F;, expressed in Fg,
and is given as

cosa; —sina; 0
[R;lo=| sina; cose; O |, fori=1,2,3 (10.9)
0 0 1
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Y

AN Ai Y;

B;

N

Figure 10.6: Relation between frames Fy and F;

Xi

Referring to Fig. 10.6,

CosS; = U; -1 = uy, (10.10)
sina; = u; J = Uiy (10.11)
After substitution of eqs.(10.9)—(10.11) into eq.(10.8), we obtain
Uiy COS P;
[silo=1[0i]o+1; | ~uizcosg; |, fori=1,2,3 (10.12)
sin (ﬁz

where o; is given by eq.(10.6).
Since the distances between the three vertices of the triangular plate are
fixed, the position vectors s, s2, and s3 must satisfy the constraints below:

||SQ had 81“2 = a? (10133)
llss — s2||*> = a2 (10.13b)
lls1 — s3> = a3 (10.13¢)

After expansion, eqs.(10.13a—c) take the forms:

Dicgr + Dacpg + Dacprega + Daspisga + Ds =0 (10.14a)
Eicpr + Escds + Eschacds + Essgasds + Ey =0 (10.14b)
Fiepr + Focds + Fzepreds + Fysprsgs + F5 =0 (10.14c)

where ¢(-) and s(-) stand for cos(:) and sin(-), respectively, while coefficients
{D;, E;, F;}} are functions of the data only and bear the forms shown below!:

Dl = 2l1(02 - Ol)TElll

1Since all vectors in the 15 coefficients of interest are coplanar, they are regarded as two-
dimensional vectors in the display of the 15 coefficients.
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Dz = —2l2(02 - Ol)TEllz
D3 = —2l1l2u2Tu1
Ds = [|lo2|I* + lloa|* — 20{ 03 + I + 15 — af

E; =2ly(o3 — OQ)TEUQ

E, = —213(03 — 02)TEug

Es = —2l2l3ug1uz

By = —2l5l;5

By = |loal + ||oa||® — 20T 0y + 3 + I2 — a3

F1 = 2l1(01 — O3)TE111
F2 = —2l3(01 - 03)TE113

F3 = —2l1l3ugu1
Fy = =2l
Py = ||og|® + [lo1[|* — 205 01 + 1 +13 — a3

In the above relations the 2 X 2 matrix E is defined as in eq.(5.55), and the
frame in which the vectors are expressed is immaterial, as long as all vectors
appearing in the same scalar product are expressed in the same frame. Since
expressions for these vectors in Fy have already been derived, it is just simpler
to perform those computations in this frame.

Our next step is to reduce the foregoing system of three equations in three
unknowns to two equations in two unknowns, and hence, obtain two contours in
the plane of two of the three unknowns, the desired solutions being determined
as the intersections of the two contours. Since eq.(10.14a) is already free of ¢3,
all we have to do is eliminate ¢3 from equations (10.14b) and (10.14¢). To do
this, we resort to the usual trigonometric identities relating c¢s and s¢s with
tan(¢s/2), in eqs.(10.14b) and (10.14¢). After we have cleared the denominators
by multiplying the two foregoing equations by (1 + 72), the equations thus
resulting take on the forms

k72 4 ko3 + k3 =0 (10.15a)
miTs + mat3 +mg =0 (10.15b)

where ki, k9, and k3 are linear combinations of s¢q, ¢do, and 1. Likewise, my,
mg, and mg are linear combinations of 8¢y, ¢¢1, and 1, namely,

k1 = Eicps — By — Ezcgs + Es
ko = 2E438¢9

ks = Ercpa + Ex + Esca + Es
my = Fiegr — Fy — Faegr + Fy
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Mo = 2F4s¢1
m3 = Ficgy + Fo + Fzcpy + Fy

Next, we eliminate 73 from the above equations dialytically, as we did in
Subsection 5.4.1 to find the workspace of a three-axis serial manipulator. We
proceed now by multiplying each of the above equations by 73 to obtain two
more equations, namely,

leg + k2‘7'32 4+ k3 =0 (10.156)
miTy +mati +mgTs =0 (10.15d)

Further, we write eqs.(10.15a)—(10.15d) in homogeneous form:
Pr3=0 (10.16a)

with the 4 x 4 matrix @ and the 4-dimensional vector 73 defined as

ki ky ks O T3
_|m ma mg 0 _| 3

P = 0 ky ks k3 y T3 = T (1016b)
0 m;y ma mg 1

Equation (10.16a) constitutes a linear homogeneous system. Moreover, in
view of the form of vector 73, we are interested only in nontrivial solutions,
which exist only if det(®) vanishes. We thus have the condition

det(®) =0 (10.16¢)

Equations (10.14a) and (10.16¢) form a system of two equations in two un-
knowns, ¢; and ¢o. These two equations can be further reduced to a single
16th-degree polynomial equation (Nanua et al., 1990), as discussed later on.

In the spirit of the contour method introduced earlier, we plot these two
equations as two contours in the ¢1-¢2 plane and determine the desired solutions
at points where the two contours intersect. Once a pair of (¢1, ¢2) values is
found, ¢3 can be uniquely determined from eqs.(10.14b & c). Indeed, these
equations can be arranged in the form:

Eys¢y  Ey + Ezcgs ] [ 5¢3 ] _ [ —Eyc¢y — E5 ]
Fys¢p1  Fo+ Fseq cps | | —Ficgr — Fs

From the above equation, both ¢¢3 and s¢3 can be found uniquely; with the
foregoing unique values, ¢3 is determined uniquely as well.

Knowing the angles ¢1, ¢2, and ¢3 allows us to determine the position vectors
of the three vertices of the mobile plate, sy, sz, and s3, whose expressions are
given by eq.(10.12). Since three points define a plane, the pose of the end-effector
is uniquely determined by the positions of its three vertices. We illustrate the
foregoing procedure with a numerical example below:
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Table 10.2: Solutions for Nanua et al.’s Example

No. ¢1 (rad) $2 (rad) ¢3 (rad)
1 0.8335 0.5399 0.8528

2 1.5344 0.5107 0.2712

3 —0.8335 —0.5399 —(0.8528
4 —1.5344 —0.5107 —0.2712

Example 10.2.1 (A Contour-Intersection Approach) We derive the di-
rect kinematics of a manipulator analyzed by Nanua et al. (1990). This is
a platform manipulator whose base plate has siz vertices with coordinates ex-
pressed with respect to the fixed reference frame Fo as given below, with all data
given tn meters:

Ay =(—29,-09), By =(-12, 3.0)

Ay=( 25, 41), By=( 3.2, 1.0)
Ag=( 13,-2.3), Bsy=(-1.2,-3.7)

i

The dimensions of the movable triangular plate are, in turn,

ap = 2.0, Az = 2.0, az = 3.0

Determine all possible poses of the moving plate for the siz leg-lengths given as

qla = 50a Q20 = 55,
@p = 4.5, g2 = 5.0,

q3q = 57,
qsp = 5.5

Solution: After substitution of the given numerical values, egs.(10.14a) and
(10.16¢) become, with ¢; and s; standing for cos ¢; and sin ¢;, respectively,

Ci:  61.848 — 36.9561c; — 47.2376¢; + 33.603¢1co — 41.6822515, = 0
Co:  —28.5721 + 48.6506¢; — 20.7097¢7 + 68.7942¢c5 — 100.811¢;co
+35.9634c3cy — 41.4096¢2 + 50.8539¢1c2 — 15.613¢2¢2 — 52.978952
+67.6522¢587 — 13.2765¢2s7 + 74.16235155 — 25.6617¢151 52
—67.953¢25182 + 33.9241¢1c951 82 — 13.20252

—3.75189¢; 53 + 6.13542¢7s3 = 0

The foregoing equations determine contours C; and Cs in the ¢;-¢, plane,
which are plotted in Figs. 10.7. Four real solutions are found by superimposing
C1 and Cy, as shown in this figure. The numerical values of the solutions, listed
in Table 10.2, agree with the published results. Solutions 1 and 2 represent
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Figure 10.7: Contours C; and C; for Nanua et al.’s example

two poses of the triangular plate over the base, while solutions 3 and 4 are
just the reflections of solutions 1 and 2 with respect to the plane of the base
plate. Hence, the geometric symmetry gives rise to an algebraic symmetry of
the solutions.

Example 10.2.2 (The Univariate Polynomial Approach) Reduce the two
equations found in Example 10.2.1, eqs.(10.14a) and (10.16¢), to a single mono-
variate polynomial equation.

Solution: We first substitute the trigonometric identities relating c¢; and s¢;
with 7; = tan(¢;/2), for ¢ = 1, 2, into eqs.(10.14a) and (10.16c). Upon clearing
the denominators by multiplying those equations by (1+72)(1+ 72), we obtain
two polynomial equations in 71, namely,

G17i + Garf + Ggri + Gamy + G5 =0 (10.17)
Hit? + Hory + H3 =0 (10.18)
where
G1 = 1’(17‘51 +K27'22 + K3

Gy = I{;;’T'é3 + Ky
G3 = I{G’Té1 +K7T22 + KS
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Gy = KoT3 + K1oTs
Gs = K117 + K272 + Ki3

and

H1 = L17'22 +L2
Hy = Lsmy
Hz; = L4Tg + Ly

In the above relations, {K;}1? and {L;}} are all functions of the data. We now
eliminate 71 from eqs.(10.17) and (10.18), following Bezout’s method, as given
in (Salmon, 1964). To do this, we multiply eq.(10.17) by H; and eq.(10.18)
by G172, and subtract the two equations thus resulting, which leads to a cubic
equation in 7, namely,

(G2H1 - G1H2)7'13 + (G3H1 - G1H3)T12 -+ G4H17'1 + G5H1 =0 (10.19&)

Likewise, if eq.(10.17) is multiplied by H;7 + H» and eq.(10.18) by G173 + Ga1?
and the equations thus resulting are subtracted from each other, one more cubic
equation in 7 is obtained, namely,

(G1Hs — G3Hy)md + (G4Hy + G3Hy — G2 Hy)7l
+(G5H1 + G4H2)’T1 + GgHy =0 (10.19b)
Moreover, if we multiply eq.(10.18) by 71, a third cubic equation in 71 can be

derived, i.e.,
Hle + 1{2’7‘12 + Hszm =0 (10.19¢)

Now, eqs.(10.18) and (10.19a—) constitute a homogeneous linear system of four
equations in the first four powers of 71, which can be cast in the form

Hry =0 (10.20)

T
where 7y =77 77 7 1] and

GoHy — G1H, GsH, — G1H; GaiH, GsH;

H= G3Hy —G1Hs G3Hy ~GaH3; +G4Hy GuHy +GsHy GsHo
- H; H, Hs 0
0 H, H, Hj

In order for eq.(10.20) to admit a nontrivial solution, the determinant of its
coefficient matrix must vanish, i.e.,

det(H) = 0 (10.21)

Given the definitions of {G}§ and {H}}3, it is apparent that G, G3, and G are
quartic, while Gy and G4 are cubic polynomials in 7». Likewise, H; and Hj are
quadratic, while Hs is linear in 7, as well. As a result, the highest-degree entries
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of the first and second rows of H are sextic, while those of its third and fourth
rows are quadratic. The outcome is that det(H) is of degree 6 +6 + 2+ 2 = 16,
i.e., det(H) is a 16th-degree polynomial in 5. This equation, in general, admits
up to 16 different solutions. Furthermore, the roots of the polynomial appear in
the form of either complex conjugate pairs or real pairs. In the latter case, each
pair represents two symmetric positions of the mobile platform with respect to
the base, i.e., for each solution found above the base, another, mirror-imaged,
solution exists below it. This symmetry exists, in general, as long as the six
base attachment points are coplanar.

Other parallel manipulators are the planar and spherical counterparts of
that studied above, and sketched in Figs. 10.8 and 10.9. The direct kinematics
of the manipulator of Fig. 10.8 was found to admit up to six real solutions
(Gosselin et al., 1992), while the spherical manipulator of Fig. 10.9 has been
found to admit up to eight direct kinematic solutions (Gosselin et al., 1994a,
b). A comprehensive account of the simulation and design of three-dof spherical
parallel manipulators, which includes workspace analysis as well, is included in
(Gosselin et al., 1995).

10.2.1 Velocity and Acceleration Analyses of Parallel
Manipulators

Now we proceed to the velocity analysis of the manipulator of Fig. 10.2a. The
inverse velocity analysis of this manipulator consists in determining the six rates
of the active joints, { by }$, given the twist t of the moving platform. The velocity
analysis of a typical leg leads to a relation of the form of eq.(5.9), namely,

J0;=ty;, J=I1II,...,VI (10.22a)

where J 7 is the Jacobian of the Jth leg, 8 is the 6-dimensional joint-rate vector
of the same leg, and t; is the twist of the moving platform M, with its operation
point defined as the point C; of concurrency of the three revolutes composing
the spherical joint of attachment of the leg to the moving platform M, and
shown in Fig. 10.3 as C, subscript J indicating that point C' of that figure is
different for different legs. We thus have

_ e (= 0 e; es e
JJ - [b34e1 X es b34e2 X ez e3 0 0 0 7 (1022b)
ty = [w :| , b3a =bg+by (10.22C)
cJy
where the leg geometry has been taken into account.
Furthermore, from Fig. 10.3, it is apparent that
Ci=p-—wxry (10.23)

with r; defined as the vector directed from C to the operation point P of the
moving platform.
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Now, we regard the axes of the five revolute joints of the six-joint leg of
Fig. 10.3 as a set of five zero-pitch screws & = {s1,s2,54,85,86}. The line
passing through O; and C is a zero-pitch screw s3 reciprocal to S, as shown
below:

Since s3 passes through Oy, its moment with respect to this point vanishes,

and hence,
_| s
=[]

Now it is simple matter to show that
sITs;, = (Ts3)Ts;, =0 for k=1,2,4,5,6 (10.24)

and T given in eq.(3.112), q.e.d.
Notice that, for the Jth leg,

e[ 2]
J

and hence, on the one hand,

1;

173,65 = (b3)s

where the subscript J reminds us that bs is different for each leg. In order
to ease the notation, and since we have a single variable b3 per leg, we define
henceforth

by = (b3)_] (10.25&)

and hence, the above relation between t; and the actuated joint rate of the Jth
leg takes the form

17356, =b; (10.25b)
On the other hand,
lzt.] = (eg)_](':‘]
Likewise, we define

(e3)J =ey (10.26&)

the foregoing relation thus yielding
Tty =eley (10.26b)

Note that vectors ey and rj define uniquely the line along the two attachment
points of the Jth leg. Henceforth, this line will be termed the axis of the Jth
leg.

Upon equating the right-hand sides of eqs.(10.25b) and (10.26b), the desired
expression for the actuated joint rate is derived, namely,

by=e¥e;, J=L1II,...,VI (10.272)
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That is, the Jth joint rate is nothing but the projection onto the Jth leg axis
of the velocity of point C;. Furthermore, upon substituting eq.(10.23) into
eq.(10.27a) above, we obtain the relations between the actuated joint rates and
the twist of the moving platform, namely,

by=[(es xr))T 7] [‘;] = kTt (10.27b)

for J=1I,1I,...,VI. Upon assembling all six leg-equations of eq.(10.27b), we
obtain the desired relation between the vector of actuated joint rates and the
twist of the moving platform, namely,

b =Kt (10.28a)

with the 6-dimensional vectors b and t defined as the vector of joint variables
and the twist of the platform at the operation point, respectively. Moreover,
the 6 x 6 matrix K is the Jacobian of the manipulator at hand. These quantities
are displayed below:

b] (eI X rI)TT e;j
b e Xry e

b=| |, t= [ﬂ , K= (e xxn)™ e (10.28b)
bVI (eVI X I‘VI)T e$1

From the above display, it is apparent that each row of K is the transpose of
the Pliicker array of the corresponding leg axis, although in axis coordinates, as
opposed to the Jacobian matrix J of serial manipulators, whose columns are the
Pliicker coordinates of the corresponding joint axis in ray coordinates. More-
over, in these coordinates, the moment of the leg-axis is taken with respect to
the operation point P of M. One more difference between the velocity analy-
sis of serial and parallel manipulators is the role played by the actuator joint
rates in the underlying forward and direct kinematics. In the case of paral-
lel manipulators, this role is changed, for now we have that the actuator joint
rates are given by explicit formulas in terms of the twist of the moving plat-
form, along with the manipulator architecture and configuration. Finding the
platform twist requires inverting matrix K. Moreover, the significance of singu-
larities also changes: When K becomes singular, some instantaneous motions of
the platform are possible even if all actuated joints are kept locked. That is, a
singularity of K is to be interpreted now as the inability of the manipulator to
withstand a certain static wrench. An extensive analysis of the singularities of
parallel manipulators using line geometry in a form that is known as Grassmann
geometry was reported by Merlet (1989).

Now, the acceleration analysis of the same leg is straightforward. Indeed,
upon differentiation of both sides of eq.(10.28a) with respect to time, one obtains

b = Ki + Kt (10.29a)
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Figure 10.8: A planar parallel manipulator

where K takes the form

up  éf
) al, el
K=| & (10.29b)
Uy ey
and uy is defined as
uy=ey Xry (10.290)
Therefore,
Uy=é&yXry+ey xry (10.29d)

Now, since vectors r; are fixed to the moving platform, their time-derivatives
are simply given by

I"J =W XTry (10.296)
On the other hand, vector e; is directed along the leg axis, and so, its time-
derivative is given by

éy = Wy Xey

with w; defined as the angular velocity of the third leg link, i.e.,
wy = (9161 + 9262)J

the subscript J of the above parentheses reminding us that this angular velocity
differs from leg to leg. Clearly, we need expressions for the rates of the first two
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Figure 10.9: A spherical parallel manipulator

joints of each leg. Below we derive the corresponding expressions. In order to
simplify the notation, we start by defining

fJ = (el)J, g = (eg)J (1029f)

Now we write the second vector equation of eq.(10.22a) using the foregoing
definitions, which yields

(01) 587 x (by +ba)ey + (82) sg7 % (by +ba)es + bjes = ¢

where b4 is the same for all legs, since all have identical architectures. Now we
can eliminate (62) s from the foregoing equation by dot-multiplying its two sides
by gJ, thereby producing

(61)58s % £1- (bs + ba)ey + +g7 (esel)es =gT¢;

where an obvious exchange of the cross and the dot in the above equation has
taken place, and expression (10.27a) for by has been recalled. Now it is a simple
matter to solve for (6,) from the above equation, which yields

T T\
vy 8i(1—egej)ey
(01)s = A,

with A defined as
AJE(b_J+b4)e_]Xf_]-gJ (10.30)
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Moreover, we can obtain the above expression for (61)y in terms of the platform
twist by recalling eq.(10.23), which is reproduced below in a more suitable form
for quick reference:

¢g=Cjyt

where t is the twist of the platform, the 3 x 6 matrix C; being defined as
C J= [R J 1]

in which R is the cross-product matrix of r; and 1 is the 3 x 3 identity matrix.
Therefore, the expression sought for (6;); takes the form
1

61); = —Eg§(1 —ejeN)Cyt, J=1,0,...,VI (10.31a)

A similar procedure can be followed to find (65) 7, the final result being

. 1
(02)5 = Z—J-fJTu —ejel)Cyt, J=1I1I,...,VI (10.31b)
thereby completing the calculations required to obtain the rates of all unactu-
ated joints. Note that the unit vectors involved in those calculations, ey, f7,
and gy, are computed from the leg inverse kinematics, as discussed above.

Planar and Spherical Manipulators

The velocity analysis of the planar and spherical parallel manipulators of Figs. 10.8
and 10.9 are outlined below: Using the results of Subsection 5.7.2, the velocity
relations of the Jth leg of the planar manipulator take the form

J0;=t, J=1I,1I,1II (10.32)

where J; is the Jacobian matrix of this leg, as given by eq.(5.60), while 6, is
the 3-dimensional vector of joint rates of this leg, i.e.,

05
! ! ! 0;= 6|, J=I1,1I

073

Jr = Erj;; Erj; Erys |’

For purposes of kinematic velocity control, however, we are interested only in
the first joint rate of each leg; i.e., all we need to determine in order to produce
a desired twist of the end-effector is not all of the foregoing nine joint rates,
but only 011, 8111, and 81771 Thus, we want to eliminate from eq.(10.32) the
unactuated joint rates 8, and 873, which can be readily done if we multiply
both sides of the said equation by a 3-dimensional vector n; perpendicular to the
second and the third columns of J;. This vector can be most easily determined
as the cross product of those two columns, namely, as

T
—rJzErJg ]

n=jr2Xjss= [I‘J2~I‘J3
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Upon multiplication of both sides of eq.(10.32) by n?, we obtain
[—l‘_’1]12EI‘J3 -+ (rJQ — I‘J3)TE1‘J1] éJl = —(I‘?zEl'Jg)w + (I‘_]Q - I‘_]3)Té (10.33)

and hence, we can solve directly for 8, from the foregoing equation, thereby
deriving
— (T Er3)w + (rg2 —ry3)7e

1 —rT,Brjs + (rj2 — ry3)TEr ( )
Note that eq.(10.33) can be written in the form
jibs =X%t, J=1I,1II, IIT (10.34b)
with j; and ky defined, for J = I, II, III, as
j1 = (ty2 —ry3)TBry —r1,Erya,
ks =[rL,Erys (rje —rs3)"]"
If we further define ) ) _ )
0=[0n 062 Orrs ]T
and assemble all three foregoing joint-rate-twist relations, we obtain
JO =Kt (10.35)
where J and K are the two manipulator Jacobians defined as
k7
J = diag(jz, jur, jir), K= | k% (10.36)
KIn

Expressions for the joint accelerations can be readily derived by differentiation
of the foregoing expressions with respect to time.

The velocity analysis of the spherical parallel manipulator of Fig. 10.9 can
be accomplished similarly. Thus, the velocity relations of the Jth leg take on
the form

J;0;=w, J=I1II,II (10.37)

where the Jacobian of the Jth leg, J;, is defined as
Ji=[en en e

while the joint-rate vector of the Jth leg, @7, is defined exactly as in the planar
case analyzed above. Again, for kinematic velocity control purposes, we are
interested only in the actuated joint rates, namely, 011, 0111, and fpry. As in
the planar case, we can eliminate 672 and 63 upon multiplication of both sides
of €q.(10.37) by a vector ny perpendicular to the second and the third columns
of J;. An obvious definition of this vector is, then,

ny=ejz Xey3
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The desired joint-rate relation is thus readily derived as
jibn =k%w, J=1I,1I, IIT (10.38)
where j; and ky are now defined as

Jr=enxej-ejs (10.39a)
ky=ej xeys (10.39b)

The accelerations of the actuated joints can be derived, again, by differentiation
of the foregoing expressions.

We can then say that in general, parallel manipulators, as opposed to serial
ones, have two Jacobian matrices.

10.3 Multifingered Hands

Shown in Fig. 10.10 is a three-fingered hand with fingers A, B, and C, each
supplied with three revolute joints. Furthermore, each finger carries two revo-
lutes of parallel axes that are normal to the axis of the third one. Thus, each
finger comprises three links, the one closest to the palm P being of virtually zero
length and coupled to P via a revolute joint. Of the other two, that in contact
with the object O is the distal phalanz, the other being the proximal phalanz.
Moreover, the fingers can be either hard or soft; if the latter, then contact takes
place over a finite area; if the former, then contact takes place over a point, and
hence, hard fingers can exert only force and no moment on the manipulated ob-
ject. Soft fingers can exert both force and moment. For the sake of conciseness,
we will deal only with hard fingers here. Let the contact points of fingers A4,
B, and C with O be denoted by Ao, Bo, and Co, respectively. The purpose of
the hand is to manipulate @ with respect to P. The motion of O, moreover,
can be specified through its pose, given in turn by the position vector o of one
of its points, O, and its orientation matrix Q with respect to a frame fixed to
P. Now, in order to manipulate O six degrees of freedom are needed. When
the three fingers are in contact with O, the hand-object system forms a parallel
manipulator with three “legs” of the RRS type, with S standing for spherical
joint. As the reader can verify, the system has six-dof, which means that manip-
ulations are possible with only two actuated revolutes per finger. Many designs
involve only two motors per finger, one of the revolute joints being provided
with springs to guarantee contact.

Thus, the location of the three contact points is fully determined if the
pose of P and the locations of Ap, Bo, and Cp in O are given. Once the
position vectors of the three contact points are known, determining the joint-
variable values needed to take O to the desired pose reduces to solving a 3-
dimensional positioning problem for each finger, with three revolute joints—a
problem already discussed in Subsection 4.4.1. The joint rates and accelerations
are then determined as in Sections 4.4 and 5.5.
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Figure 10.10: A three-fingered hand

While the mechanics of grasping is quite elaborate, due to the deformation
of both fingers and object, some assumptions will be introduced here to pro-
duce a simple model. One such assumption is rigidity; a second is smoothness,
under which each finger is capable of exerting only normal force on the object.
Moreover, this force is unidirectional, for the finger cannot exert a pull on the
object. The smoothness and rigidity assumptions bring about limitations, for
they require a rather large number of fingers to exert an arbitrary wrench on
the grasped object, as shown below.

We assume that we have a rigid object @ bounded by a surface S that is
smooth almost everywhere, i.e., it has a well-defined normal n everywhere except
at either isolated points or isolated curves on S. Below we show that in order to
exert an arbitrary wrench w onto O, a hand with rigid, smooth fingers should
have more than six fingers. Assume that the n contact points on S are { P;}7
and that we want to find n pressure values { A;}7 at the contact points that will
produce the desired wrench w onto O.

Moreover, let the unit normal at P; be denoted by n; and the vector directed
from O to P; be denoted by pi, as shown in Fig. 10.11.

The wrench w; exerted by each finger onto O at P; is apparently

w; =\ [pix(_ni)}, Ai >0

Upon equating the resultant wrench with the desired wrench, we obtain

n — . X .
E [ p'L n1:| Az’ —-wW
1 T
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Figure 10.11: Geometry of grasped object O

or in compact form, as
GA=—w (10.40a)

where G is the 6 X n grasping matriz and A is the n-dimensional vector of
pressure values, i.e.,

A1

G = P1Xn; - Pp XNy by .

- L

nl P nn

I

: (10.40b)
An
Note that the ith column of the grasping matrix is nothing but the array of
Plicker coordinates of the line of action of the force exerted by the ith finger
on the object, in ray coordinates—see Subsection 3.2.2.

Thus, for n = 6, a unique pressure vector A is obtained as long as G is non-
singular. However, negative values of {X;}7 are not allowed, and since nothing
prevents these values from becoming negative, six fingers of the type considered
here are not enough. We must thus have more than six such fingers in order to
be able to apply an arbitrary wrench onto the body. For n > 6 and a full-rank
6 x n grasping matrix, nonnegative values of {\;}7 can be generated, but only
under certain conditions, as explained below: Let u be a vector lying in the
nullspace of G, i.e., such that Gu = 0. Then an arbitrary A can be expressed
as

A=A +u

where Ag is a particular solution of eq.(10.40a). For example, if Ag is chosen as
the minimum-norm solution of eq.(10.40a), then we have, explicitly,

Ao = —Glw
where Gt is the generalized inverse of G, defined as
Gt =GT(GGT)!

The numerical computation of the minimum norm solution of an undetermined
system of linear equations is discussed in Appendix B.
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Figure 10.12: A prototype of the KU Leuven three-fingered hand (courtesy of
Prof. H. Van Brussel)

Note that the 6 x 6 product GG has the general form

cGT = [ 21 xn)(pi x na)" i (pi X ni)ni’
21 ni(pi % ny) n;nf

Although a symbolic expression for the inverse H of GG is not possible in the
general case, we can always express this inverse in block form, with all blocks
of 3 x 3, namely,

» -1 _ |Hu Hio
H= (GG ) = I:H?‘?' B

where consistently, Hy; has units of meter—2, H;5 has units of meter—!, and
Hj, is dimensionless. Moreover, we can partition G into two 3 x n blocks, i.e.,

o<l

in which A has units of meter, while B is dimensionless. Hence, the product
GTH takes on the form

GT™H =[ATH,; + BTH7, ATH;; + BTHy;]

and hence, the left-hand block of the foregoing product has units of meter—!,
while the right-hand block is dimensionless. Upon multiplying the desired
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wrench w from the left by this product, the result, Ag, has consistently units of
Newton.

Now, to find u, several numerical methods are available that do not require
any matrix inversion (Golub and Van Loan, 1989). A simple way of expressing
u, although by no means the way to compute it, is given by

u=Pv, P=1-GlG

where v is an n-dimensional vector and P is a matrix projecting v onto the
nullspace of G, and 1 defined as the n x n identity matrix. Now we are left with
the task of finding v so that

A=A +u; >0, i=1, ., n

Hence, our policy to determine u is simply, for ¢ =1, ..., n,

0 if )\01' 2 0;
u; = ’ ’
¢ —Moi, Otherwise.

Further, v is found upon solving
Pv=u

However, P is singular—its rank is n — 6, as the reader is invited to prove—and
the above equation may or may not admit a solution. For a solution to be
possible, u must lie in the range of P.

A more general approach to solving the grasping problem relies on linear
programming, but this topic lies beyond the scope of the book. The inter-
ested reader is directed to the specialized literature on the subject (Hillier and
Lieberman, 1995).

In the presence of soft fingers, however, fewer than six fingers suffice to grasp
an object. Moreover, in the presence of friction, the force transmitted by a finger
has, in addition to its normal component, a tangential component that, hence,
gives rise to a contact force making a nonzero angle with the normal n; to the
object surface at the ith contact point. Therefore, by virtue of the linear relation
between the normal and the tangential components of the transmitted force,
given by the coefficient of friction p, this force is constrained to lie within the
friction cone. This cone has its apex at the contact point P;, its elements making
an angle o with the normal, that is given by @ = arctan(u). Furthermore,
by virtue of the fundamental assumption of Coulomb friction analysis, u lies
between 0 and 1, and hence, «a is constrained to lie between 0° and 45°.

Shown in Fig. 10.12 is an example of a three-fingered hand. This hand was
developed at the Katholieke Universiteit Leuven (Van Brussel et al., 1989).

The literature on multifingered hands and the problem of grasping is far
richer than we can afford to describe here. Extensive studies on these subjects
have been reported by Reynaerts (1995) and Teichmann (1995.)
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10.4 Walking Machines

Besides the walking machines introduced in Chapter 1, namely, the OSU Adap-
tive Suspension Vehicle and the TUM Hexapod, other legged machines or leg
designs are emerging with special features. For example, CARL, shown in
Fig. 10.13, is a compliant articulated robot leg that was designed at McGill
University’s Centre for Intelligent Machines (CIM) by Prof. Buehler and his
team (Menitto and Buehler, 1996). This leg contains an actuation package with
a high load-carrying capacity (ATLAS) and an antagonistic pair of concentric
translational-to-angular displacement devices. The leg has four degrees of free-
dom, of which two are actuated by ATLAS and one by a harmonic drive motor,
while one is unactuated. This leg design is intended to provide locomotion to a
quadruped.

Figure 10.13: The compliant articulated robot leg (courtesy of Prof. M. Buehler)

As nature shows in mammals, four legs are necessary to guarantee the static
equilibrium of the body while one leg is in the swing phase. Static equilibrium
is achieved as long as the horizontal projection of the mass center of the overall
body-legs system lies within the triangle defined by the contact points of the
three legs that are in the stance phase. More than four legs would allow for
greater mobility. For purposes of symmetry, some walking machines are designed
as hexapods, so as to allow for an equal number of legs in the swing and the
stance phases.

The kinematic analysis of walking machines is possible using the hexapod
displayed in Fig. 10.14.

Furthermore, contact with the ground is assumed to take place such that
the ground can exert only a “pushing” force on each leg but no moment. Thus,
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Figure 10.14: A general hexapod

while we can model the contact between leg and ground as a spherical joint,
care must be taken so that no pulls of the ground on the leg are required for a
given gait.

Additionally, we shall assume that the leg is actuated by three revolutes,
namely, those with variables 64, 85, and ¢ in Fig. 10.15, where G denotes the
ground and B the machine body. A photograph of one of the six identical
legs of the walking machine developed at the Technical University of Munich,
introduced in Fig. 1.10, is included in Fig. 10.16. The Denavit-Hartenberg
parameters of this leg, proceeding from the ground upwards, are displayed in
Table 10.3. Note that the architecture of this leg is simply that of a three-
revolute manipulator carrying a spherical joint at its end-effector, similar to
that of the decoupled manipulators studied in Section 4.4. The spherical joint
accounts for the coupling of the leg with the ground. We are thus assuming
that when a leg is in contact with the ground, the contact point of the leg is
immobile. At the same time, the motion of the body B is prescribed through
the motion of a point on the axis of the revolute coupled to the body. Such a
point is indicated by Py for the Jth leg. Moreover, the point of the Jth leg in
contact with the ground will be denoted by O;. Thus, when prescribing the
motion of the body through that of each of the six points Pr, Py, ..., Pyr,
the rigid-body compatibility conditions of egs.(8.14), (8.15), and (8.28) must be
observed. The pose of the body B is thus specified by the position of a point C
of the body and the orientation matrix Q of the body with respect to a frame
fixed to the ground, the position vector of C in that frame being denoted by c.
The specification of points Pr to Py thus follows from the knowledge of ¢ and
Q, thereby guaranteeing compliance with the above-mentioned constraints.

Furthermore, a maneuver of B, given by a prescribed pose, can be achieved
by suitable values of the actuated-joint variables, which thus leads to a problem
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Figure 10.15: One of the legs of a walking machine with three actuated revolutes

of parallel-manipulator inverse kinematics.

The mechanical system that results from the kinematic coupling of the ma-
chine legs with the ground is thus equivalent to a parallel manipulator. The
essential difference between a walking machine and a parallel manipulator is
that the former usually involves more actuators than degrees of freedom. This

feature is known as redundant actuation and will not be pursued here.

Table 10.3: DH Parameters of the leg of the TU-Munich walking machine

i a; (mm) b; (mm) @;
1 17 0 90°
2 123 0 180°
3 116 0 0°
4 0 0 90°
5 0 0 90°
6 0 0 0°




416 10. Kinematics of Alternative Robotic Mechanical Systems

Figure 10.16: One of the six identical legs of the TU Munich Hexapod (courtesy
of Prof. F. Pfeiffer. Reproduced with permission of TSI Enterprises, Inc.)

10.5 Rolling Robots

Probably the rolling robot that has received most media attention is NASA’s
Sojourner, of the Pathfinder mission, which explored a spot of the Martian
landscape for several months in 1997. It is noteworthy that the Sojourner was
designed, built, and commissioned with a shoestring budget for NASA stan-
dards. The Sojourner is a paradigm of rolling robots for autonomous operation
on rough terrain. We focus here on the simplest robots of this class, i.e., robots
intended for tasks on horizontal surfaces, and so, their platforms undergo planar
motion, which greatly simplifies their kinematics. One special feature of rolling
robots is their nonholonomic nature. 'What this means is that the minimum
number m of generalized coordinates defining uniquely a posture of the sys-
tem is greater than the number n of their independent generalized speeds, i.e.,
m > n. In the case of serial and parallel manipulators, paradigms of holonomic
systems, m = n. In nonholonomic systems, then, we must distinguish between
their posture, or configuration degree of freedom and their mobility, or veloc-
ity degree of freedom. For the sake of conciseness, we will refer to the latter
whenever we mention the degree of freedom of a rolling robot.

Rolling robots are basically of two kinds, depending on whether they are
supplied with conventional or with omnidirectional wheels. The simplest robots
with conventional wheels are capable only of 2-dof motions, and hence, are kine-
matically equivalent to conventional terrestrial vehicles. However, robots with
omnidirectional wheels (ODWSs) are capable of 3-dof motions, which increases
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Figure 10.17: A 2-dof rolling robot: (a) its general layout; and (b) a detail of
its actuated wheels

substantially their maneuverability. Below we outline the kinematics of the two
kinds of robots.

10.5.1 Robots with Conventional Wheels

We begin with robots rolling on conventional wheels. Since these have two
degrees of freedom, they need only two actuators, the various designs available
varying essentially in where these actuators are located. The basic architecture
of this kind of robot is displayed in Fig. 10.17a, in which we distinguish a chassis,
or robot body, depicted as a triangular plate in that figure: two coaxial wheels
that are coupled to the chassis by means of revolutes of axes passing through
points Oy and Og; and a third wheel mounted on a bracket.

Now, the two actuators can be placed in two essentially different arrays. In
the first array, not shown in the figure, one actuator is used for propulsion and
the other for steering, the former being used to provide locomotion power to
the common two-wheel axle via a differential gear train. This train is required
to allow for different angular velocities of the two coaxial wheels. Moreover,
the orientation of the mid-plane of the steering wheel, defined by angle v, is
controlled with the second actuator. This design has some drawbacks, namely,
(1) the two motors serving two essentially different tasks call for essentially
different operational characteristics, to the point that both may not be available
from the same manufacturer; (4¢) the propulsion motor calls for velocity control,
the steering motor for position control, thereby giving rise to two independent
control systems that may end up by operating in an uncoordinated fashion; and
finally, (ii1) the use of a differential gear train increases cost, weight, and brings
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about the inherent backlash of gears.

In the second actuation array, shown in Fig. 10.17b, the two coaxial wheels
are powered independently, thereby doing away with the differential train and
its undesirable side effects, the third wheel being an idle caster. Moreover, the
orientation of the latter is determined by friction and constraint forces, thereby
making unnecessary the steering control system of the first array. Below we
analyze the kinematics of a robot with this form of actuation.

Let point C of the platform be the operation point, its projection onto a
horizontal plane H containing the common axis of the two actuated wheels being
(', as indicated in Fig. 10.17b. Let, moreover, the position vector of C’ in a
frame fixed to the ground, with origin lying in #, be denoted by c¢. Additionally,
let w be the scalar angular velocity of the platform about a vertical axis. By
virtue of the 2-dof motion of this robot, we can control either the velocity ¢
of C—or of C' for that matter—or a combination of w and a scalar function
of ¢ by properly specifying the two joint rates #; and 8. However, we cannot
control the two components of ¢ and w simultaneously.

In order to proceed with the kinematic analysis of the system at hand, we
define an orthonormal triad of vectors whose orientation is fixed with respect
to the chassis. Let this triad be denoted by {1, j, k }, with k pointing in the
upward vertical direction. Thus, the velocities 6; of points O;, for i = 1,2, are
given by )

o, = rgij, i=1,2 (10418.)

Furthermore, the velocity of C can now be written in 2-dimensional form as
¢=06;+wE(c—o0;), i=12 (10.41Db)

with E defined as in eq.(5.55). Thus, all vectors of eq.(10.41b) are 2-dimensional.
Substituting eq.(10.41a) into eq.(10.41b) and subtracting sidewise eq.(10.41b)
for ¢ = 1 and for i = 2, we derive

[’I'(él - 92) - UJl]j = 02

Hence, the angular velocity w of line O; O3 in planar motion, which is the same
as that of the platform, can be readily expressed as

w = %(01 - 02) (10410)

its positive direction being that of k. Upon substitution of eqs.(10.41a & b)
into eq.(10.41b), we obtain expressions for ¢ in terms of the joint rates, sim-
ilar to eqs.(10.41b), for ¢ = 1,2. Furthermore, upon adding sidewise the two
expressions thus resulting, we obtain ¢ in the desired form, namely,

¢ = a%(él - 92)1 + g(el + 02)] (10.41d)

Equations (10.41c & d) express now the differential direct kinematics rela-
tions of the robot under study. In compact form, these relations become

t =180, (10.41e)
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with the 3 x 2 matrix L defined as

= r/l —r/l
L= [(ar/l)i +(r/2)j —(ar/Di+ (7‘/2)_]] (10.41f)

Moreover, the planar twist t of the platform and the 2-dimensional vector 0, of
actuated joint rates are defined as
t= [‘;’] , O, = [gj (10.41g)
Computing the joint rates from the foregoing equations, i.e., solving the asso-
ciated inverse kinematics problem, is now a trivial task. The inverse kinematics
relations are computed below by noticing that eq.(10.41¢) provides a relation
for the joint-rate difference. Thus, all we need now is a second equation for
the joint-rate sum. By inspection of eq.(10.41d), it is apparent that we can
derive this relation by dot-multiplying both sides of this equation by j, thereby
obtaining .

&-j= 2(9'l + 8) (10.42)

The two equations (10.41¢) and (10.42) can now be cast into the usual form
JO, =Kt (10.43a)

where the two robot Jacobians J and K are given below:

J= “ *11] . K= [(lé’”) (2/07:?] (10.43b)

Note that J is a 2 x 2 matrix, but K is a 2 x 3 matrix.
The inverse kinematics relations are readily derived from eq.(10.43a), namely,

where g = ¢ -j.

Now, in order to complete the kinematic analysis of the robot at hand, we
calculate the rates of the unactuated joints, 83 and . To this end, let w;, for
1 = 1,2,3, and 03 denote the 3-dimensional angular velocity vector of the ith
wheel and the 3-dimensional velocity vector of the center of the caster wheel.
Likewise, wy denotes the scalar angular velocity of the bracket.

We thus have, for the angular velocity vectors of the two actuated wheels,

w1 = —éli + wk = —éli + %(01 - 92)1(

=[~i+(r/Dk —(r/Dk] [z:] (10.44a)
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wa = —fai + wk = —fai + §(6'1 ~ by)k
=[(r/Dk —i—(r/Dk] [z;] (10.44b)

In the ensuing derivations, we will need the velocities of the centers of the
two actuated wheels, which were derived in eq.(10.41a). Moreover, the angular
velocity of the caster wheel can be readily written in the frame fixed to the
bracket, { es, f3, k }, namely,

w3 = 9.363 + (w + ’(ﬁ)k (1045)

with 9 denoting the angle between vectors j and e of Fig. 10.17a, measured
in the positive direction of k, as indicated in the layout of Fig. 10.18. Note

fa

Figure 10.18: Layout of the unit vectors fixed to the platform and to the bracket
that vector ez is parallel to the axis of rolling of the caster wheel, while f3 is a
horizontal vector perpendicular to es. These two sets of unit vectors are related
by

eg = —sinyi + cos)j (10.46a)
f; = — cosyi — sin ¥ (10.46b)

their inverse relations being

i= —sinye; — cosyfs (10.46¢)
j = cosypes — sinf; (10.46d)

Furthermore, the velocity of the center of the caster wheel is derived as
03 = w3 xrk = —’I‘égf3

while the scalar angular velocity of the bracket, wy, is given by

wi=wA = %(él — )+ (10.47)
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In Chapter 12 we shall need ¢ in bracket coordinates. Such an expression is
obtained from egs.(10.41d) and (10.46c & d), namely,

¢c= [—a%(él - 92) siny + %(6"1 + 92) cost))es
—[a%(él — 02) costp + (61 + b) sin Y (10.48)
Expressions for the dependent rates in terms of the independent ones, 6,
and 0,, are readily derived. To this end, we express the velocity of P in two

independent forms, one in terms of the velocity of O3 and the other in terms of
the velocity of C, i.e.,

P =63 +wik x (p — 03) (10.49a)
p =&+ wk x (—bj) (10.49b)

Upon equating the right-hand sides of the above equations, we obtain a 3-
dimensional vector equation relating dependent with independent rates, namely,

—705f3 + (W + )k X (p — 03) = & + bwi

where we have recalled the expressions derived above for 63 and ws. Further,
we rewrite the foregoing equation with the unknown rates, 83 and 1, on the
left-hand side, i.e.,

—rfsf3 + 9k X (p ~ 03) = & + bwi — wk X (p — 03) (10.50)
Moreover, we note that, from Fig. 10.17,
p—o03= —dfg—l—(h—’l‘)k

and hence,
k x (p —o03) = des

equation (10.50) thus becoming
—rf3fs + des = & + w(bi — des) (10.51)

Now it is a simple matter to solve for 63 and 1) from eq.(10.51). Indeed, we
solve for 3 by dot-multiplying both sides of the above equation by f3. Likewise,
we solve for 4 by dot-multiplying both sides of the same equation by es, thus
obtaining

—703 = & - f3 + whi - f3
dip =& - ez +w(bi-ez —d)

Now, by recalling the expressions derived above for w and &, we obtain
¢ -fz = —a%(él - ég)COS’l/) — —;—(01 + 92)sin¢

é-e3 = —a%(él — By) sinep + g(él + 65) cos

i-fs =—cosyp, i-e3=—siny
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Therefore,
B3 = acosy(6: — 62) + —;—(sin ¥) (61 + 62) (10.52a)
¥ =p |—(asiny +6)(61 — 62) + %(cos ) (61 + 65) (10.52b)
with the definitions given below:

«

(10.53)

a+b d
Ta P

r
5 r
!’ d

Hence, if we let 0, = [93 ’(/J]T be the vector of unactuated joint rates, then
we have

6, =00, (10.54a)
with © defined as

O = [ acost + (sine)/2 —acosy + (siny)/2
T | pl—asiny + (cosvp) /2 — 8] plasiny + (cosy)/2 + ]

thereby completing the intended kinematic analysis.

(10.54b)

10.5.2 Robots with Omnidirectional Wheels

In general, omnidirectional wheels (ODWs) allow for two independent transla-
tional motions on the supporting floor and one independent rotational motion
about a vertical axis. Based on the shapes of the wheels, moreover, ODWs can
be classified into spherical wheels and Mekanum wheels, the latter also being
known as ilonators. Spherical wheels have been extensively investigated in the
literature (West and Asada, 1995). We focus here on ODWs of the Mekanum
type and assume that the robot of interest is equipped with n of these.

The Mekanum wheel bears a set of rollers mounted along the periphery
of the wheel hub at a given angle, as shown in Figs. 1.13(a) and 10.19(a).
Furthermore, the rollers are shaped so that the wheel appears as circular on
its side view, as shown in Fig. 10.19(b), in order to ensure a smooth motion.
Pairwise orthogonal unit vectors e;, f; and g;, h; are defined on the middle
horizontal planes of the wheel hub and of the roller in contact with the floor,
respectively. This roller is termed active in the discussion below. Now we aim
at finding the kinematic relation between the wheel joint rates {6;}7 and the
Cartesian velocity variables of the robot, namely, the scalar angular velocity w
and the 2-dimensional velocity vector ¢ of the platform centroid. To this end,
we express the velocity 6; of the centroid O; of the ith wheel in two different
forms: first we look at this velocity from the active roller up to the centroid O;;
then, from the platform centroid C to O;.

If we relate the velocity of O; with that of the contact point of the active
roller with the ground, then we can write, with the aid of Fig. 10.20,

O, =p; + Vv (1055)
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Figure 10.19: (a) The Mekanum Wheel; (b) its side view

with v; defined as the relative velocity of O; with respect to P;. Now let wj, and
w, denote the angular-velocity vectors of the hub and the roller, respectively,
ie., )
wp =wk+0ie;, wr=wh+¢igi
We thus have
Pi = wy X Q;F; = (wk + b;e; + ¢:g:) x bk
where b is the radius of the rollers at the contact point with ground. In addition,

6; denotes the rate of the wheel hub, while #; denotes that of the active roller,
which are positive in the directions of vectors e; and g;, respectively. Hence,

Pi = —b(0:f; + $ihy) (10.56)

Moreover, '
v; =wyp X P,0; = (wk + Giei) X (a — b)k

a denoting the height of the axis of the wheel hub, as shown in Fig. 10.19(b).
Thus,

vi = —b;(a — b)f; (10.57)

thereby obtaining the desired expression for ¢;, namely,
o; = —abf; — bo;h; (10.58)
A general layout of the ith ODW with roller axes at an angle «; with respect

to the normal e; to the middle vertical plane of the corresponding hub is shown
in Fig. 10.21. The subscript i is associated with both the i{th wheel and its
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Figure 10.21: The layout of the ith wheel with respect to the robot platform

active roller. Moreover, the velocity 6; of the ith wheel can be expressed in
terms of the Cartesian velocity variables, ¢ and w, as

0, = ¢+ whd; (10.59)

where we have used a 2-dimensional vector representation, with d; defined as
the vector directed from point C to the centroid O; of the hub and E defined as
in eq.(5.55). Furthermore, since all rollers are unactuated and they rotate idly,
the value of ¢; is immaterial to our study. Hence, we eliminate this variable
from the foregoing equations, which is done by dot-multiplying both sides of
eq.(10.58) by g;, normal to h;, thereby deriving

gl 6; = —abig] f;

But
gl'f, = sinqy
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Therefore,
gl6; = —a(sina;)b; (10.60)

The same multiplication performed on eq.(10.59) yields
gl 6: = (g] Bdi)w + g/ & (10.61)

Upon equating the right-hand sides of eqs.(10.60) and (10.61), we derive the
desired relation, namely,

—a(sine;)f; =k7t, i=1,...,n (10.62)

where the 3-dimensional vector k; is defined as

St
¢ gi

and the twist vector t is as defined in eq.(10.41g). We now define the vector of
wheel rates @ in the form

6=[6, 6, --- 6,7 (10.63)
If the n equations of eq.(10.62) are now assembled, we obtain
Jo =Kt (10.64)

where, if we assume that all angles ¢; are identical and labeled a, then the n xn
Jacobian J and the n x 3 Jacobian K take the forms

J = —asinal (10.65a)
glEd, gf

K= : : (10.65b)
grEd, gn

with 1 denoting the n x n identity matrix.

Given eqs.(10.65a) and (10.65b), the differential inverse kinematics can be
resolved as
1

asina

6=— Kt (10.66)
whence it is apparent that sina must be different from zero, i.e., the axes of
the rollers must not be parallel to the axis of the hub. If these axes are parallel,
then the ODWs reduce to conventional wheels.
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10.6 Exercises

10.1 For the parallel manipulator of Fig. 10.2, find the matrix mapping joint
forces into wrenches acting on the moving platform, if actuation is supplied
through the prismatic joints.

10.2 Show that, if det(H) of eq.(10.21) is expanded in the form
det(H) =H Ay — HyAg + H3zAj

then Ay, A,, and Az are 14th-, 13th-, and 12th-degree polynomials in 72,
respectively.

10.3 What is the counterpart of a decoupled serial manipulator, as described
in Section 4.4, of a six-dof parallel manipulator with the architecture of
Fig. 10.27 What is the degree of the characteristic polynomial of that
parallel manipulator? Compare this answer with the characteristic poly-
nomial derived in Section 4.4.

10.4 We refer to the rolling robot with conventional wheels introduced in Sub-
section 10.5.1. We would like to study the equivalent concept of manip-
ulability, which here we can call maneuverability. This concept refers to
the numerical conditioning of the two underlying Jacobian matrices, J and
K, as defined in eqs.(10.43a & b). Clearly, J is isotropic and hence, op-
timally conditioned. In attempting to determine the condition number of
K, however, we need to order its singular values from smallest to largest.

(a) Show that the two singular values of K are o1 = l/r and o3 = 2/r.
Obviously, an ordering from smallest to largest is impossible because
of the lack of dimensional homogeneity.

(b) In order to cope with the dimensional inhomogeneity of matrix K, we

introduce the characteristic length L, which we define below. First,
we redefine the Jacobian K in dimensionless form as

<%0 ]

Now, L is the value that minimizes the condition number of the
dimensionless K. Show that this value is /2 and that it produces a
condition number of unity.

10.5 With reference to the robot of Fig 10.17, assume that the motors are
placed rather on the joints associated with variables ¢ and 65. Under
these conditions,

(a) Find the matrix ¥ maping array [f3 ¢]T into array [0; 62]T.

(b) Is it possible to find values of 9, «, 8, and p that will render ¥
isotropic? If so, which are these values?
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10.6

10.7

10.8

10.9

Find an expression for the angular velocity ¢; of the active roller of the ith
wheel of the robot with Mekanum wheels introduced in Subsection 10.5.2.

We refer again to the robot with Mekanum wheels introduced in Subsec-
tion 10.5.2. For the case of a three-wheeled robot of this kind, we consider
here a design whereby the wheels are equally spaced in a A-array. In this
array, the centers of the hubs, O;, lie at the corners of an equilateral tri-
angle of side a; moreover, we assume that «; = 90°, for i = 1, 2, 3. Under
these conditions, find the characteristic length L of the robot that renders
K, as defined in the above-mentioned subsection, dimensionless and of a
minimum condition number. Find this minimum as well.

Find the value of ¢ at which the rolling robot of Fig. 10.17 attains a
singular configuration. Here, a singularity is understood as a loss of ma-
neuverability in the sense of not being able to drive the unactuated joints
by means of the actuated ones. Discuss whether under reasonable values
of the geometric parameters, this singularity can occur.

Determine the architecture and the “posture”, i.e., the values of the rele-
vant joint variables of the rolling robot of Fig. 10.17 that will render ma-
trix © isotropic, where © represents the mapping of actuated joint rates
into unactuated ones. Is kinematic isotropy, in this sense, kinematically
possible?

10.10 Find a relation among the geometric parameters of the robot of Fig. 10.17

that will allow the steering of the robot along a straight course with the
highest possible maneuverability in the sense defined in Exercise 10.8.
That is, find a relation among the geometric parameters of this robot that
will render £(®) a minimum along a straight course.

10.11 Find the value of 3 under which the robot of Fig. 10.17 performs a ma-

neuver that leaves the midpoint of segment O; 0, stationary. Under this
maneuver, state a relationship among the geometric parameters of the
robot that minimizes x(@®).

10.12 Upon inversion, eq.(10.54a) yields

0, = Ué,
(a) Find U.
(b) The above equation can be written as
0.1 = U13é3 -+ Uh/,’LZ' = uf@u
92 = UQ393 -+ U2¢'¢" = uQTBu

The first of the above equations can be integrated if w;, which is
an implicit function of 83 and %, is the gradient with respect to
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0. =103 )T of ascalar function U; (63,1). Likewise, the second of
the above equations can be integrated if a function Ux(63,) exists,
whose gradient with respect to 8, is us. Further, upon recalling
Schwartz’s Theorem of multivariable calculus, u; is such a gradient
if and only if Vuy, i.e., the Hessian matriz of U; with respect to 8,,
is symmetric, for ¢ =1, 2.

Show that the above-mentioned Hessians, for the case at hand, are
nonsymmetric, and hence, none of the above differential expressions
is integrable. Such expressions are called nonholonomic.

Note: To be sure, the above condition is sufficient, but not neces-
sary. It is possible that some individual equations of a system of
differential expressions, also called Pfaffian forms, are not integrable
while the overall system is. An examination of necessary and suffi-
cient conditions for integrability falls beyond the scope of this book.
Such conditions are best understood with the aid of the Frobenius
Theorem (De Luca and Oriolo, 1995) and its analog, the Holonomy
Theorem (Ostrovskaya and Angeles, 1998).

10.13 For the rolling robot with omnidirectional wheels introduced in Sec-

tion 10.5.2, with a A-array, as described in Exercise 10.7, show that the
equation yielding the angular velocity of the platform in terms of the wheel
rates is integrable, but the equations yielding the velocity of the operation
point are not.

10.14 A holonomic rolling robot. The robot described in Exercise 10.13 can

be rendered holonomic at the expense of one degree of freedom. Show
that if the three wheel rates are coordinated, either mechanically or elec-
tronically so that

91+92+93=0

then the platform is constrained to move under pure translation. When
operating in this mode, the robot is holonomic. Find an explicit expression
for the position vector ¢ of the operation point in terms of the wheel angles.



Chapter 11

Trajectory Planning:
Continuous-Path
Operations

11.1 Introduction

As a follow-up to Chapter 6, where we studied trajectory planning for pick-and-
place operations (PPO), we study in this chapter continuous-path operations.
In PPO, the pose, twist, and twist-rate of the EE are specified only at the two
ends of the trajectory, the purpose of trajectory planning then being to blend
the two end poses with a smooth motion. When this blending is done in the
joint-variable space, the problem is straightforward, as demonstrated in Chap-
ter 6. There are instances in which the blending must be made in Cartesian
space, in which advanced notions of interpolation in what is known as the im-
age space of spatial displacements, as introduced by Ravani and Roth (1984),
are needed. The image space of spatial displacements is a projective space
with three dual dimensions, which means that a point of this space is speci-
fied by four coordinates—similar to the homogeneous coordinates introduced in
Section 2.5—of the form z; + €&;, for i = 1,2,3,4, where ¢ is the dual unity,
which has the property that ¢ = 0. The foregoing coordinates are thus dual
numbers, their purpose being to represent both rotation and translation in one
single quantity. In following Ravani and Roth’s work, Ge and Kang (1995) pro-
posed an interpolation scheme that produces curves in the image space with
second-order geometric continuity, which are referred to as G? curves. These
interpolation techniques lie beyond the scope of the book and will be left aside.
The interested reader will find a comprehensive and up-to-date review of these
techniques in (Srinivasan and Ge, 1997).
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The purpose of this chapter is to develop motion interpolation techniques
in Cartesian space that produce smooth motions in both Cartesian and joint
spaces. Motion interpolation in joint space was discussed in Chapter 6, the
present chapter being devoted to motion interpolation in Cartesian space. To
this end, we resort to basic notions of differential geometry.

11.2 Curve Geometry

Continuous-path robotics applications appear in operations such as arc-welding,
flame-cutting, deburring, and routing. In these operations, a tool is rigidly
attached to the end-effector of a robotic manipulator, the tool being meant
to trace a continuous and smooth trajectory in a 6-dimensional configuration
space. Three dimensions of this space describe the spatial path followed by the
operation point of the EE, while the remaining three describe the orientation
of the EE. Some applications require that this task take place along a warped
curve, such as those encountered at the intersections of warped surfaces, e.g.,
in aircraft fuselages, while the path is to be traversed as a prescribed function
of time. This function, moreover, is task-dependent; e.g., in arc-welding, the
electrode must traverse the path at a constant speed, if no compensation for
gravity is taken into account. If gravity compensation is warranted, then the
speed varies with the orientation of the path with respect to the vertical. Below
we will define this orientation as that of the Frenet-Serret frame associated
with every point of the path where the path is smooth.

Moreover, for functional reasons, the orientation of the EE is given as a
rotation matrix that is, in turn, a prescribed smooth function of time. In arc-
welding, for example, the orientation of the electrode with respect to the curve
must be constant. The trajectory planning of the configuration subspace asso-
ciated with the warped path is more or less straightforward, but the planning
of the trajectory associated with the orientation subspace is less so.

While most methods of trajectory planning at the Cartesian-coordinate level
focus on the path followed by the operation point, the underlying inverse kine-
matics of a six-axis robotic manipulator requires the specification of the orienta-
tion of the EE as well. In the presence of simple manipulators with a spherical
wrist, as those studied in Subsection 4.4.2, the positioning and the orientation
tasks are readily separable, and hence, the planning of the two tasks can be
done one at a time. In other instances, e.g., in most arc-welding robots, such a
separation is not possible, and both tasks must be planned concurrently, which
is the focus of our discussion below. Here, we follow the technique presented in
(Angeles et al., 1988).

Crucial to our discussion is the concept of path orientation. Let I' be a
warped curve in 3-dimensional space that is smooth in a certain interval of
interest for our discussion. Under these conditions, we can associate with every
point of this interval an orthonormal triad of vectors, i.e., a set of unit vectors
that are mutually orthogonal, namely, the tangent, the normal, and the binormal
vectors of I'. Therefore, when this set of vectors is properly arranged in a 3 x 3
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array, a rotation matrix is obtained. This matrix thus represents the orientation
of I'. In order to parameterize these vectors, let s be the arc length measured
along I' from a certain reference point on this curve. Below we review the basic
differential-geometric concepts pertaining to our discussion.

The tangent, normal, and binormal unit vectors, e, e,, and e;, respectively,
associated with every point of I" where this curve is smooth, are generically
termed here the Frenet-Serret vectors. These vectors are defined as

e, =1 (11.1a)
r xr"

= 11.1b

= x| (11.10)

e, =€ X € (11.1¢)

where r’ stands for dr/ds and r" for d?r/ds®. Now the Frenet-Serret relations
among the three foregoing unit vectors and the curvature « and torsion 7 of I"
are recalled (Brand, 1965):

det

—d_s = Ke€pn (1123.)
de
d—: = —Ke; + Tey (11.2b)
d
% = —re, (11.2¢)

Moreover, the curvature and torsion can be calculated with the aid of the for-
mulas

k=" xr"| (11.3a)
’ 1",
7= E_X_’EEQ_“_ (11.3b)

where 1"’ stands for d®r/ds®. Furthermore, differentiation of k and 7, as given
above, with respect to s, yields

! 111
k'(8)=('xr")- (r_xﬂr_) (11.4a)
' 1, n(iv) _ ' M"Y L (! 1"
7(s) = r xr'.r 27;{(;‘ x1r)- (' xr") (11.4b)

where r(#) stands for d'r/ds*. The geometric interpretation of the curvature is
the rate of change of orientation of the tangent vector with respect to the arc
length; that of the torsion is the rate at which the curve quits the plane of the
tangent and normal vectors. Thus, at points where the curvature vanishes, the
curve approximates a line to a second order, i.e., up to second-order derivatives,
whereas at points where the torsion vanishes, the curve approximates a planar
curve to a third order—Notice that the torsion involves third-order derivatives.
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Now, from the Frenet-Serret formulas and the chain rule, we can derive the
time-rate of change of the Frenet-Serret vectors, namely,

& = %s: sken (11.5a)

é, = del.éz —SKe; + éTey (11.5b)
ds

o= 5 sre, (11.5¢)
ds

Furthermore, let w be the angular velocity of the Frenet-Serret frame. Then,
clearly,

€ =WwXe (116&)
én=wXe, (11.6b)
& =wXep (11.6¢)

Upon equating pairwise the right-hand sides of eqs.(11.5a~c) and eqs.(11.6a—
c), we obtain three vector equations determining w, namely,

—Eiw = éke, (11.7a)
~E,w = —3ke; + sTey (11.7b)
—Eyw = —ére, (11.7¢)

where we have introduced the cross-product matrices E;, E,,, and E; of vectors
e, e,, and ey, respectively, thereby obtaining a system of nine scalar equations
in the three unknown components of w, i.e.,

Aw=Db (11.8a)

with A defined as the 9 X 3 matrix and b as the 9-dimensional vector displayed
below:

Et .énen
A=—-|E,|, b= |s(—ke +1ep) (11.8b)
Eb —éTen

Although the foregoing system is overdetermined, it is consistent, and hence it
comprises exactly three linearly independent equations, the remaining six being
dependent on the former. One way to reduce system (11.8a) to only three
equations consists in multiplying both sides of this equation by AT. Now, the
product AT A greatly simplifies because matrix A turns out to be isotropic, as
per the discussion of Section 5.8, i.e., its three columns are mutually orthogonal
and all have the same magnitude. This fact can become apparent if we realize
that the three 3 x 3 blocks of A are cross-product matrices of three orthonormal
vectors. Thus,
ATA =ETE, + EIE, + E[E,
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If we now recall Theorem 2.3.4, the foregoing products take on quite simple
forms, namely,

ETE, = —E? = — (-1 + e;e])

ETE, = -E2 = — (=1 + ege))

ETE, = —E2 = —(—1+ epe])
Moreover, for any 3-dimensional vector v, we have

(ere] +enel +epel)v=v

and hence, the above sum in parentheses reduces to the identity matrix, i.e.,
ecel +enel 4 epel =

the product AT A thus reducing to

ATA =21
Therefore, w takes on the form
1 ske,
w=g [E: E, E;]|3(—kre;+ Tes)
—8Te,
Or upon expansion,
w = —;— [ker X e, + ep X (Tey — key) — Tep X ey (11.10)

However, since the Frenet-Serret triad is orthonormal, we have
e Xe, =€, e€,Xe =€, e Xe —e, (11.11)

Upon substitution of expressions (11.11) into the expression for w given in
eq.(11.10), we obtain

w =46 (11.12)
where § is the Darboux vector, defined as
8§ = Te; + ke (11.13)

Expressions for the curvature and torsion in terms of the time-derivatives of the
position vector are readily derived using the chain rule, which leads to

_ L x|
[l
FXir

(11.14a)



434 11. Trajectory Planning: Continuous-Path Operations

Upon differentiation of both sides of eq.(11.12), the angular acceleration w
is derived as

W =56+ 36 (11.15)
where the time-derivative of the Darboux vector is given, in turn, as
6 = ey + kep (11.16)

in which egs.(11.5a-c) have contributed to the simplification of the above ex-
pression. The time-derivatives of the curvature and torsion are readily derived
by application of the chain rule, thereby obtaining

k= $K'(s)= i(r' xr'"y. (@' x ') (11.17a)

&

F = (s)= %[r' x e e — 20 x £ (' x 1)) (11.17b)

The time-derivative of the Darboux vector thus reduces to
6 = 5(Ae; + Bep) (11.18a)

where scalars A and B are computed as

v ox ) — 27 x ") (! xr")

p= & xx) (@ xx) (11.18¢)
= - .
and hence, the angular acceleration reduces to
W = 36 + §°(Ae; + Bey) (11.19)

From the relations derived above, it is apparent that the angular velocity
is a bilinear function of the Darboux vector and $, while the angular acceler-
ation is linear in § and quadratic in §. The computational costs involved in
the calculation of the angular velocity and its time-derivative amount to 31
multiplications and 13 additions for the former, and 28 multiplications with 14
additions for the latter (Angeles et al., 1988). Notice that the angular velocity
requires, additionally, one square root.

In the above discussion, it is assumed that explicit formulas for the two
time-derivatives of the arc length s are available. This is often not the case, as
we show with the examples below, whereby an intermediate parameter, which
is easier to handle, is introduced. What we will need are, in fact, alternative
expressions for the quantities involved, in terms of kinematic variables; i.e., we
need time-derivatives of the position vector r rather than derivatives of this
vector with respect to the arc length s. Below we derive these expressions.
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First, note that e; can be obtained by simply normalizing the velocity vector
I, namely, as

r

€ = —— (11.20)
]
where it is not difficult to realize that
§=|| (11.21)

Moreover, the binormal vector e, can be derived by application of the chain rule
to vector r', namely,
d' _dr'/dt _1d

H:_____:_______:_____l 11.2
V= S wja s sa™) (11:222)

But p
, r T
= —= - .22
r'(s) S =3 (11.22b)
and hence,
1[d (¢ §f — 8t
" = - —— -_ =
r = o [dt <8>] = (11.22¢)

Now, upon substitution of expressions (11.22b & c¢) into eq.(11.1b), an alter-
native expression for e is derived, in terms of time-derivatives of the position
vector, namely,

rXr

= TcE] (11.23)

ep
Finally, e,, can be readily computed as the cross product of the first two vectors
of the Frenet-Serret triad, namely,

(t x¥) xr

I x E (|1 (11.24)

e, =€, Xe =

The time-derivatives of the Frenet-Serret vectors can be computed by direct
differentiation of the expressions given above, namely, eqs.(11.20), (11.23), and
(11.24).

11.3 Parametric Path Representation

Only seldom is an explicit representation of the position vector r of a geometric
curve possible in terms of the arc length. In most practical cases, alternative
representations should be used. The representation of the position vector in
terms of a parameter o, whatever its geometric interpretation may be, whether
length or angle, will henceforth be termed a parametric representation of the
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curve at hand. The choice of o is problem-dependent, as we illustrate with
examples.

Below we derive expressions for (a) the Frenet-Serret triad; (b) the curvature
and torsion; and (c) the derivatives of the latter with respect to the arc length.
Al} these expressions, moreover, will be given in terms of derivatives with respect
to the working parameter o. The key relation that we will use is based on the
chain rule, already recalled several times earlier. Thus, for any vector v(o),

dv _dvdo

ds ~ dods
However, the foregoing relation is not very useful because we do not have an
explicit representation of parameter ¢ in terms of the arc length. Nevertheless,
we will assume that these two variables, s and o, obey a monotonic relation.
What this means is that o

= >0 (11.25)

which is normally the case. Under this assumption, moreover, we can write the
derivative of v as

dv _ dv/do
ds ~ ds/do
where, apparently,
ds dr
2= || =@
Therefore, the derivative sought takes the form
dv v/ (o)
- =7 11.26a
ds ~ @ (11.262)
It goes without saying that the same relation holds for scalars, i.e.,
dv _ V(o)
— = 11.26b
& = TPl (11:200)
Expressions for the Frenet-Serret triad now follow immediately, i.e.,
r'(o)
e; = (1127&
@l :
r'(o) xr"(0)
g =—"°>= (11.27b
(o) ()] :
['(0) x 2" (0)] x r'(0)
e, =€, Xe = (11270)
" lIr'(e) x 2" (a)|ll|x' ()]
Now, paraphrasing relations (11.14a & b), we have
lIr'(e) x £ (o)l
- 11.28a
EGIE (1128
] 1" ]
r'(o) xr'(o) - r (11.28b)

~ o) x ()]



11.3 Parametric Path Representation 437

the partial derivatives of the curvature and torsion with respect to the arc length
being computed in terms of the corresponding partial derivatives with respect
to the parameter o, which is done with the aid of the chain rule, i.e.,

' K (‘7) ' T (U)
"= wor T Wl (11:29)
Expressions for «'(0) and 7/ (), in turn, are derived by a straightforward differ-
entiation of the expressions for x and 7 in terms of o, as given in eqs.(11.28a &
b). To this end, we first recall a useful expression for the derivative of a rational
expression ¢(z) whose numerator and denominator are denoted by N(z) and
D(z), respectively. This expression is

¢(@) = #)[N'(m) — g(z)D'(2) (11.30a)

D(z

Note that nothing prevents the numerator of the foregoing rational expression
from being a vector, and hence, a similar formula can be applied to vector ratios
as well. Let the denominator of a vector rational function q(z) be n{z). Under
these conditions, then, we have

q'(z) = D )[ n'(z) — q(z) D’ (z)) (11.30b)

As a matter of fact, the above relation can be extended to matrix numerators.
Not only is this possible, but the argument can likewise be a vector or a matrix
variable, and similar formulas would apply correspondingly.

We thus have, for the derivative of the curvature,

d

W) = 22 I() x5 @)| = | @) (11.31)

1
e (o)l®

Now we find the first term inside the brackets of the foregoing expression from
the relation

d
257 (@) x ") = 2{l" x x| == lr' > =]

which yields

L4 00) x 1 (o))

d ! 1
e =l = e o

do
But

2 1(o) <@ = L (1(0) x (o) - (o) x5 (@]}
=2[r'(¢) x r"(0)] - d(i [r' (o) x 1" (0)] (11.32)

the derivative of the above term in brackets reducing to

L (o) x1"(0)] = ¥'(0) x £ (0)
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and hence,

d r'(o) xr'"(a)] - [v' (o) x "' (o

%”rl x rII|| — [ ( ) (||r)l]x[r”(“ ) ( )] (11-33&)
Furthermore,

d ! _ ' 2 d '
@) =3 @)P (o)

the last derivative again being found from an intermediate relation, namely,

L @) = 2l @) ()]
whence,
do, 1 d.,
%“r (G)II - 2”1,,(0_)“ dO'”r (0)||2
with
L@l = Li(o)-r(0) = 2'(0) -¥(0)
LIOIP = 1o1(0) ¥(0)] = 2¢(0) (o
and so,
d ., _r'(o)-r"(0) d  ,
%”1‘ ()l = W@HI‘ (@)|I?
Therefore,
L (@) = 3l (@) ' (0) - (o) (11.33b)

Substitution of egs.(11.33a & b) into eq.(11.31) yields the desired expression,
namely,

[t'(0) x t"(0)] - ['(0) x r"(0)] _ , r'(0)-1"(0)

k'(o) = e (@)[IB]I > o] e’ ()] |?

(11.34)
Likewise,
(o) = % (11.35a)
with NV and D defined as
N =L 1(0) x1"(0) - 1"(0)] = m-L (o) x ¥ (o) (11.35b)
“ do do ’
D = ||[F'(0) x 2" (o) (11.35¢)

The first term of the numerator N of the foregoing expression can be readily
calculated as

%[r'(a) X 1'(0) - 2"(0)] = 1'(0) x 2" (0) - 1) () (11.35d)
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while the derivative appearing in the second term of the same numerator was
obtained previously, as displayed in eq.(11.32). Upon substitution of the ex-
pressions appearing in egs.(11.32) and (11.35d) into eq.(11.35a), we obtain the
desired expression:

iy (o) xr"(0)- [£@)(g) — 277/ (0) x ¥ (0)]
= o) <P P (11350

thereby completing the desired relations.

Example 11.3.1 (Planning of a gluing operation) A robot used for a glu-
ing operation is required to guide the glue nozzle fized to its end-effector through
a helicoidal path so that the tip of the nozzle traverses the helixz at o constant
speed vo = 0.8m/s and the end-effector maintains a fived orientation with respect
to the curve, i.e., with respect to the Frenet-Serret triad of the helixz. Determine
the orientation malriz Q of the end-effector with respect to o frame {z, y, z}
fized to the robot base, as well as the angular velocity and angulor acceleration
of the end-effector. The operation is to be performed with o Fanuc 5-300 robot,
whose Denavit-Hartenberg (DH) parameters are given in Table 11.1, while the
axtis of the heliz is chosen to be parallel to the first axis of the robot and beginning
at point Py (2, —2, 1.2) in meters. Find the joint trajectories of the robot as
well as the associated joint rates and joint accelerations from Cartesian position,
velocity, and acceleration data. Verify that the joint-rate and joint-acceleration
profiles are compatible with those of the joint variables. It is known that the
radius of the heliz is a = 1.6 m and that its pitch is b = 2.5 m/turn. Finally,
the gluing seam spans through one quarter of o heliz turn.

Table 11.1: DH Parameters of a Fanuc S-300 Robot

Link | a; (m) | b; (m) | a; (deg)
1 0.0 0.9 90
2 0.9 0.0 0
3 0.95 0.0 90
4 0.0 1.3 -90
5 0.0 0.0 90
6 0.0 0.44 —90

Solution: We will use a Cartesian frame fixed to the base of the robot such that
its z axis coincides with the axis of the first revolute. The helix can then be
given in the parametric representation shown below:

z=24+acosyp

y=—2+asing
b

2=12+ 2

2



440

0
(deg)

03
(deg)

05
(deg)

11. Trajectory Planning: Continuous-Path Operations

3 4 7 ¥ 9 1

t (ss) 6

02
(deg)

04
(deg)

B
(deg)

°
E]

L)

Figure 11.1: Joint trajectories for a Fanuc S-300

where the parameter ¢ is the angle made by the projection, onto the X-Y
plane, of the position vector of a point P of the helix with the z axis. In the
process, we will need first and second time-derivatives of the foregoing Cartesian

coordinates. These are given below for quick reference:

and

# = —ap®cosp —a@sinyp

—asin g
apcosy

Py

i = —ap? sin g + ap cos @
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Figure 11.2: Joint velocities for a Fanuc S-300
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We now impose the constant-speed condition, which leads to

and hence,

2, 2, , v
w2+y2+z25a2<p2+ms02=v§

where the constant ¢ is defined as

C = g

Thus, ¢ is constant, and hence,

p=c

472

472a2 + b2

p=ct

441
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Moreover, in terms of constant ¢, the Cartesian coordinates of a point of the
helix take on the forms

z=2+acosct

y=—2+asinct

be
=124 —
2 + 27rt

the first time-derivatives of these coordinates becoming

& = —acsinct
Yy = accosct
. be
2= —
27
and the corresponding second time-derivatives

2

& = —ac”cosct
i = —actsinct
=0

Now the Frenet-Serret triad is readily calculated as

dr P —asinct
etEE—Efz— acosct
s & b/2r
Furthermore,
de;, & ac® | " ct
—— E — =—35 | —sinct | = ke,
ds § U5 0
from which it is apparent that
2 An2a cps ct
K=a—5 = e, =—|sinct

v~ 4m2a? + b2’ 0

Thus, the binormal vector e; is calculated simply as the cross product of the
first two vectors of the Frenet-Serret triad, namely,

c —(b/2m)sinect
ep =€ X e, = " (b/2r) cosct
—a

and hence, the orientation matrix Q of the gluing nozzle, or of the end-effector
for that matter, is given by

Q=le; en )
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Hence,
—asinet —(vo/c)cosct  (b/2m)sinct
Q=—| acosct —(vo/c)sinct —(b/27m)cosct
Yo | (b/2n) 0 a

Now, the angular velocity is determined from eq.(11.12), which requires the
calculation of the Darboux vector, as given in eq.(11.13). Upon calculation
of the Darboux vector and substitution of the expression thus resulting into
eq.(11.12), we obtain

A 0 0
w = 5 0 =c|0
Y | (4n2a® + %) /4n? 1

which is thus constant, and hence,
w=20

Now, the coordinates of the center of the wrist, C, are determined with the
aid of relation (4.18c), where the operation point is a point on the helix, i.e.,
p = zi + yj + zk, parameters bg, A¢, and pg being obtained from Table 11.1,
namely,

bg =0.440 m, A¢ =cosag =0, ug=sinas=—1

Furthermore, the numerical value of ¢ is obtained from the helix geometry,
namely,

—08\/ dr” = 0.48522 s~
C=VN e x162+252 S

Upon substitution in eq.(4.18¢) of the entries found above for Q, along with the
numerical values, we obtain the Cartesian coordinates of the center C of the
spherical wrist of the robot as

zo 2 + 1.16 cos(0.48522¢)
yo | = | —2 + 1.16sin(0.48522¢)
z2c 1.2 4 0.19306¢

in meters. Apparently, point C describes a helicoidal path as well, although of
a smaller radius, that is coaxial with the given helix.

Now the time-histories of the joint angles are computed from inverse kine-
matics. Note that the robot at hand being of the decoupled type, it allows for
a simple inverse kinematics solution. The details of the solution were discussed
extensively in Section 4.4 and are left as an exercise to the reader.

Of the four inverse kinematics solutions of the arm, three were found to lead
to link interferences, when these trajectories were tested with the aid of RVS, the
package for robot visualization developed at McGill University (Darcovich et al.,
1999). Hence, only one such solution is physically possible. This solution, along
with one of the two wrist solutions, is plotted in Fig. 11.1, with Figs. 11.2 and
11.3 showing, respectively, the corresponding joint rates and joint accelerations.
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Figure 11.3: Joint accelerations for a Fanuc S-300

Note that the maxima and minima of the joint-variables occur at instants
where the corresponding joint rates vanish. Likewise, the maxima and minima
of joint rates occur at instants where the associated joint accelerations vanish,
thereby verifying that the computed results are compatible. A more detailed
verification can be done by numerical differentiation of the joint-variable time-
histories.

Example 11.3.2 (Planning of an arc-welding operation) A spherical re-
servoir of radius R is to be arc-welded to a cylindrical pipe of radius r, with the
azis of the cylinder located a distance d from the center of the sphere, all elements
of the cylinder piercing the sphere, i.e., d+r < R, as shown in Fig. 11.4.
Note that two intersection curves are geometrically possible, but the welding will
take place only along the upper curve. Moreover, the welding electrode is to
traverse the intersection curve, while the tool carrying the electrode is to keep a
constant orientation with respect to that curve. In the coordinate frame shown
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in Fig. 11.4, find an expression for the rotation matriz defining the orientation
of the end-effector, to which the electrode is rigidly ottached.

(a) (b)

Figure 11.4: Intersection curve between a spherical reservoir and a cylindrical
pipes

Solution: Note that the X axis of the coordinate frame indicated in Fig. 11.4
intersects the A axis of the cylinder, this axis being parallel to the Z axis.
Moreover, we define ¢ as the angle shown in Fig 11.4(b). Now, the z and y
coordinates of an arbitrary point of the intersection curve are given by

x=d+rcosp (11.36a)
y=rsing (11.36D)

Further, in order to find the remaining z coordinate, we use the equation of
the sphere, S, namely,

S: 2 +y’+2 =R

If we substitute the x and y coordinates of the intersection curve in the above
equation and then solve for the 2z coordinate in terms of ¢, we obtain

z=++v/R2—r2—d2 —2drcosy (11.36¢)

In the above relation, the plus and minus signs correspond to the upper and
lower portions of the intersection curve, respectively. Since we are interested in
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only the upper intersection, we will take only the positive sign in that relation.
Furthermore, we define
d=>M, R=pr

where A and p are nondimensional constants. Moreover, let

o

i

-2 -1>0
1

v/ p?—2Acosy

the inequality following from the geometry of Fig.11.4(b). Then, the position
vector r of any point on the intersection curve can be expressed in the form

Ay
Il

A+ cosp
r=r sin ¢ (11.37)
1/¢

Now, upon differentiation of r with respect to ¢, we obtain

[ —sing

r'{p)=r| cose (11.38a)
| A@sing
[ —cosy

(o) =r —singp (11.38b)
| M@ cosp — (A2 sin? p)@°

where we have used the relation

?'(¢) = ~(Asin )5’
In addition, using eqs.(11.38a & b), we derive the items needed to compute the
Frenet-Serret triad, from which we will derive the required orientation matrix,

ie.,

AP — N23° cos g sin? ¢

r'(p) x () = r? —X2p3sin3 (11.39a)
1
Ir" (@)l = rG(w) (11.39b)
lIr'(0) x =" ()|| = r*¢*/D(p) (11.39¢)

with functions D{p) and G(yp) defined as

D= p" 22 £ X 4+ p% — 62 MN? + p?) cosp + 6AZ(A? + 2p?) cos?
+2X3(p? — 4) cos® ¢ — 3X* cos® (11.39d)

G =1/14+22p2sin’ (11.39¢)
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Now ey, €, and e, are obtained as

1 —sing

!
e = r,((’o) =G| cose | = % (11.40a)
I’ ()] AP sin @
5 2253 -2
Y xx'ly) _ 1 [MTALIOeSNe) o,
b= o - = - =A@ sin® = — (11.40b)
e’ (@) x (D)l @*vD 1 $3v/D
1 3,54 _/\3('5: sin’ 902—2COS('0 n ( )
e, = ——— | A% cospsin® ¢ — A°P?sinp —sing | = ——=— (11.40c
¢*VDG Mg cosp — A2p%sin @*VDG

where e, has been calculated as e, = e; X e;.
The orthogonal matrix defining the orientation of the end-effector can now
be readily computed as

Q=le; en e

for we have all the necessary expressions. Note, however, that these expressions
allow us to find Q for any value of ¢, but we do not have, as yet, an expression
of the form () that would allow us to obtain Q(t). Such an expression is
derived in Example 11.5.1.

Example 11.3.3 (Calculation of torsion, curvature, and Darboux vec-
tor) We refer here to the intersection curve of Example 11.3.2, for which we
want to find expressions for its curvature, torsion, and Darboux vector.

Solution: We can use directly the expressions derived above, eqgs.(11.28a &
b), to obtain the curvature and torsion in terms of derivatives with respect to
parameter . With thesc cxpressions and thosc for the Frenct-Serret triad, the
Darboux vector would follow. However, we can take shortcuts, for we already
have expressions for the Frenet-Serret triad, if we express the curvature and
torsion in terms of this triad and its derivatives with respect to ¢, as we explain
below. Indeed, from the Frenet-Serret relations, egs.(11.2b), we can express the
curvature and torsion in the forms

k=e(s) e, (11.41a)
T=—e,(s) e, (11.41b)

and hence, all we need now are the derivatives of the tangent and normal vectors
with respect to s. These are readily derived using relation (11.26a), i.e.,

e;(y)

ey(s) = ol (11.42a)
' e, (¥)
) = Tl (11.420)
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Now, in order to differentiate the Frenet-Serret triad with respect to ¢, we
first note, from egs.(11.40a—c), that these three expressions are vector rational
functions, and hence, their derivatives with respect to ¢ are derived by applying
€q.(11.30b), thereby obtaining

() = Hmi() - G () (11.43)

&) = 903—15 {n;,uo) e [3¢2¢'<¢)¢5 ; @32—%}} (11.44)

where n; and n; are the numerators of the vector rational expressions of ey
and ey, respectively, given in eq.(11.40a & b). Below we calculate the foregoing
derivatives with respect to ¢:

—cosy
ny () = —siny
MA@ (cos @ — Ap? sin? )

@' — Ap? sin @[3’ cos g sin p + B3 cos? p — 1)]
nj(p) = A —3Xp? sin? o[’ sin  + ¢ cos )
0

_ —Asingp
" (p® — 2\ cos p)3/2

D'(p) = 60°X(A? + p?) sinp — 12X02(7\% 4 2p?) cos psin p
—6X3(p? — 4) cos? psinp + 12X* cos® psin

22 i
G'(p) = ;gw(% cos ¢ + ¢’ sing)

and ||r'(¢)|| was already calculated in Example 11.3.2.
If we now substitute all the foregoing expressions into eqs.(11.42a & b), we
obtain, after intensive simplifications,

53
K= VD¢

Gy (11.45a)
MQEsin @
R (11.45b)
with function E(yp) defined, in turn, as
1
E(p) = F[—)ﬁg&“ sin? p 4+ A% sin? (A cos p — 1) + cos ] (11.46)

With the foregoing expressions for e, ey, 7, and &, computing the Darboux
vector of the intersection curve reduces to a routine substitution of the foregoing
expressions into eq.(11.13).
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11.4 Parametric Splines in Trajectory Planning

Sometimes the path to be followed by the tip of the end-effector is given only
as a discrete set of sampled points {P;}}. This is the case, for example, if the
path is the intersection of two warped surfaces, as in the arc-welding of two
plates of the hull of a vessel or the spot-welding of two sheets of the fuselage of
an airplane. In these instances, the coordinates of the sampled points are either
calculated numerically via nonlinear-equation solving or estimated using a vision
system. In either case, it is clear that only point coordinates are available, while
trajectory planning calls for information on derivatives of the position vector of
points along the path with respect to the arc length. These derivatives can be
estimated via a suitable interpolation of the given coordinates. Various inter-
polation schemes are available (Foley and Van Dam, 1982; Hoschek and Lasser,
1992), the most widely accepted ones being based on spline functions, which
were introduced in Section 6.6. The splines introduced therein are applicable
whenever a function, not a geometric curve, is to be interpolated. However,
in trajectory planning, geometric curves in three-dimensional space come into
play, and hence, those splines, termed nonparametric, are no longer applicable.
What we need here are parametric splines, as described below.

Although parametric splines, in turn, can be of various types (Dierckx, 1993),
we will focus here on cubic parametric splines because of their simplicity.

Let P;(z;, yi, 2:), for i = 1,..., N, be the set of sampled points on the path
to be traced by the tip of the end-effector, {p;}{’ being the set of corresponding
position vectors. Our purpose in this section is to produce a smooth curve I"
that passes through {P;})V and that has a continuous Frenet-Serret triad. To
this end, we will resort to the expressions derived in Section 11.3, in terms of a
parameter ¢, which we will define presently.

We first introduce a few definitions: Let the kth derivative of the position
vector p of an arbitrary point P of I" with respect to o, evaluated at P;, be de-

noted by pgk), its components being denoted correspondingly by xgk), y,(k), and

zgk). Next, the coordinates of P are expressed as piecewise cubic polynomials
of o, namely,

2(0) = Agi(0 — 03)° + Byi(o — 09)? 4 Coi(0 — 03) + Dy (11.47a)

y(o) = Ayi(o — oi)® + Byi(o — o)) + Cyi(lc —0;) + Dy (11.47b)

2(0) = Azz’(U — 0'1')3 + Bzi(O' — 0,’)2 + Cz,'(O' - O‘i) + D,; (11.47C)
for a real parameter o, such that 0; <o < o0441,andi=1,...,N — 1, with o
defined as

o1=0, 0iy1 =0;+Ac;, Ac;= \/A:I:f + Ay? + Az2  (11.47d)
A.’L’,’ = Tip1 — Ty Ayi = Yit1 — Yi, Azi = Zi4l — % (11.476)

and hence, Ag; represents the length of the chord subtended by the arc of path
between P; and P, 1. Likewise, ¢ denotes a path length measured along the spa-
tial polygonal joining the N points { P;}I. Thus, the closer the aforementioned
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points, the closer the approximation of Ag; to the arc length between these two
points, and hence, the better the approximations of the curve properties.

The foregoing spline coefficients Azi, Ays, ..., Dy, fori=1,...,N —1, are
determined as explained below. Let us define the N-dimensional vectors

X = [21,...,2n]T, ' =[z,..., 2% (11.48a)
y=[vi,..-,un]7, y' =W, .., u%]" (11.48b)
z=[2,...,28)7, 2 =2, 20T (11.48¢)

The relationships between x, y, and z and their counterparts x”, y”, and z”
are the same as those found for nonparametric splines in eq.(6.58a), namely,

Ax" =6Cx (11.49a)
Ay" = 6Cy (11.49b)
Az" = 6Cz (11.49c¢)

which are expressions similar to those of eq.(6.58a), except that the A and C
matrices appearing in eq.(11.49b) are now themselves functions of the coordi-
nates of the supporting points (SP) of the spline. In fact, the (N — 2) x N
matrices A and C are defined exactly as in egs.(6.58b & ¢), repeated below for
quick reference:

a1 20(1,2 (67)] 0 e 0 0
0 o 2003 a3 e 0 0
A=|: : : : (11.49d)
0 0 .. aNlu 2aNI,IINH aNll 0
0 0 0 e QN ZOCN)IINI QN
and
Br =Pz B 0 e 0 0
0 B —Pos Bs e 0 0
C=1: : : (11.49€)
0 0 .. ﬂNllI —ﬂNI)IINII ﬂNII 0
0 0 0 - By —Puen Bw
where oy, and 3, are now defined correspondingly, i.e., for 4,5,k =1,...,N’,

ar = Aok, aij=ai+aj, Pr=1/ax, PBij=Pp+08 (11.50)
while N', N"”, and N"' are defined as in eq.(6.58f), i.e., as
N'=N-1, N"=N-2, N"=N-3 (11.51)

Note that the spline p(o) is fully determined once its coefficients are known.
These are computed exactly as their counterparts for nonparametric splines,
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namely, as in eqs.(6.55a~¢). Obviousty, different from the aforementioned for-
mulas, the coefficients of the parametric spline pertain to three coordinates, and
hence, three sets of such coefficients need be computed in this case. In order to
simplify matters, we introduce the vectors below:

Azk Ba:k ka D-’L‘k
ap = Ayk y b, = Byk , Cp = Cyk , dk = Dyk (1152)
Azk sz Czk Dzk

and thus, the position vector of an arbitrary point P on the parametric spline
takes on the form

p(0) = ar(c—0x) +by(o—0r)  +er(o—0ap)+dy, k=1,...,N~1 (11.53a)
in the interval o, < 0 < o441- The counterpart set of eqgs.(6.55a—¢) is then

1

&% = 5 Aor (Ph41 — Px) (11.53b)

by, = %p’é (11.53¢)
A 1

e = KE‘: — & Aok (P4 +2p}) (11.53d)

d; = Pk (11.536)

Api = Pr+1 ~ Pk (11.53f)

where vectors p; and pj are defined as

Tk Ty
Pr=|WUk|, PrL=|Ui (11.54)
2k 2z

Note that since p is piecewise cubic in ¢, p’ is piecewise quadratic, whereas p”
is piecewise linear in the same argument, p'”’ being piecewise constant; higher-
order derivatives vanish. Properly speaking, however, the piecewise constancy
of p"” causes the fourth-order derivative to be discontinuous at the SP, and con-
sequently, all higher-order derivatives are equally discontinuous at those points.
In practice, these discontinuities are smoothed out by the inertia of the links
and the motors, if the SP are chosen close enough. Obviously, higher-order
continuity can be achieved if higher-order splines, e.g., quintic splines, are used
instead. For the sake of conciseness, these splines are not discussed here, the
interested reader being directed to the specialized literature (Dierckx, 1993).
Further, the N x 3 matrices P and P” are defined as

AL
p p
p=|"], pr=|"" (11.55)

24
ic)
=3

p
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which allows us to rewrite eqs.(11.49b) in matrix form as
AP" = 6CP (11.56)

Tt is now apparent that the spline coefficients ay, ..., d; can be calculated once
vectors pj are available. These vectors can be computed via matrix P" as the
solution to eq.(11.56). However, finding this solution requires inverting the (N —
2) x N matrix A, which is rectangular and hence cannot be inverted, properly
speaking. We thus have an underdetermined system of linear equations, and
further conditions are needed in order to render it determined. Such conditions
are those defining the type of spline at hand. For example, closed paths call
naturally for periodic splines, while open paths call for other types such as
natural splines. The conditions imposed on periodic parametric splines are
listed below:

PN =P1, Py=DP1, Py =P] (11.57a)

On the other hand, natural parametric splines are obtained under the con-
ditions

pl=ph=0 (11.57b)

Thus, if a periodic parametric spline is required, then vectors py and p; can be

deleted from matrices P and P", respectively, these then becoming (N —1) x 3
matrices, namely,

w7
P P
p=| |, P'= 2 (11.58)
P%—l (PKJ—lT

Moreover, the first-derivative condition of eq.(11.57a) is added to the N — 2
continuity conditions of eq.(6.56), thereby obtaining N — 1 equations of this
form. Consequently, A becomes an (N — 1) x (N — 1) matrix. Correspondingly,
C also becomes an (N — 1) x (N — 1) matrix, i.e.,

201, N aq 0 0 s an:
o 2012 Q2 0 e 0
0 ay 2033 a3 e 0
a=| T . . (11.59a)
0 0 oo Qi 2aN”’,N" QN
an: 0 0 s Q! 2a N1 N
and
_BI,N’ /81 0 0 PN IBNI
B =Pz B 0 e 0
0 P2 —P23  Ps e 0
C= . . . . . . (1159b)
0 0 R ﬂNIII —ﬁNIII’NII ﬁNI/
,BN/ 0 0 /BNII ““ﬂNII,NI
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Since A is nonsingular, eq.(11.56) can be solved for P”, namely,

P’ =6A'CP

453

(11.60)

thereby computing all vectors {pjc’}/lv"l, from which p/, can be readily obtained.
Hence, the spline coefficients follow.

Likewise, if natural parametric splines are used, then P” becomes an (N —
2) x 3 matrix, while A, consequently, becomes an (N — 2) x (N — 2) matrix, as
given in eq.(6.59).

Table 11.2: The Cartesian coordinates of the supporting points

@ | 0° 30° 60° 90° 120° 150°

z {045 0.429904 | 0.375 0.3 0.225 0.170096
y |0 0.075 0.129904 0.15 0.129904 0.075

z | 0.396863 | 0.411774 | 0.45 0.497494 0.540833 0.570475
p | 180° 210° 240° 270° 300° 330°

z | 015 0.170096 0.225 0.3 0.375 0.429904
y |0 —0.075 —0.129904 | —0.15 —0.129904 | —0.075

z | 0.580948 0.570475 .540833 0.497494 0.45 0.411774

Example 11.4.1 (Spline-approximation of a warped path) For the nu-
merical values B = 0.6 m, r = 0.15 m, and d = 0.3 m, determine the peri-
odic parametric cubic spline approximating the intersection of the sphere and
the cylinder of Fig. 11.4, with 12 equolly spaced supporting points along the
cylindrical coordinate @, i.e., with supporting points distributed along the inter-
section curve ot intervals Ayp = 30°. Using the spline, find values of the tangent,
normal, and binormal vectors of the curve, as well as the rotation matriz Q.
In order to quantify the error in this approzimation, compare (i) the compo-
nents of the two position vectors, the exact and the spline-generated ones, while
normalizing their differences using the radius of the cylinder v; and (ii) the
Euler-Rodrigues parameters of the exact and the spline-approxzimated rotation
matrices. Plot these errors vs. .

Solution: We use eq.(11.37) to find the Cartesian coordinates of the supporting
points. The numerical results are given in terms of the components of r =
[z, y, 2] in Table 11.2. Note that this table does not include the Cartesian-
coordinate values at 360° becausc these are identical with those at 0°.

The four Euler-Rodrigues parameters {r;}?_, of the rotation matrix are
most suitably calculated in terms of the linear invariants, i.e., as appearing
in eq.(2.78). If we let p and T denote the estimates of p and r, respectively,
then the orientation error is evaluated via the the four differences Ar; = r; — 7,
for i = 0,...,3. The positioning error is computed, in turn, as the normalized
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Figure 11.5: Plots of the positioning errors

difference € = (p — p)/r to yield a dimensionless number, its components being
denoted by €, €, and €,. The components of the two errors are plotted vs. ¢
in Figs. 11.5 and 11.6. Note that the orientation errors are, roughly, one order
of magnitude greater than the positioning errors.

11.5 Continuous-Path Tracking

When a continuous trajectory is to be tracked with a robot, the joint angles
have to be calculated along a continuous set of poses of the end-effector. In
practice, the continuous trajectory is sampled at a discrete set of close-enough
poses { s;, }¥ along the continuous trajectory. Then in principle, an TKP must be
solved at each sampled pose. If the manipulator is of the decoupled type, these
calculations are feasible in a fraction of a millisecond, for the solution reduces,
in the majority of the cases, to a cascading of quadratic equations. In the worst
case, the inverse kinematics of a decoupled manipulator requires finding all the
roots of a quartic equation at each sampled pose, but this is still feasible in the
same time frame, for the four roots of interest can be calculated from formulas.
However, if the manipulator has an architecture not lending itself to a simple
solution and requires solving polynomials of a degree higher than four, then
finding all solutions at each sample pose may require a few milliseconds, which
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Figure 11.6: Plots of the orientation errors

may be too slow in fast operations. Hence, an alternative approach is needed.

The alternative is to solve the IKP iteratively. That is, if we have the value
of the vector of joint variables 8(1;) and want to find its value at tx41, then we
use Algorithm 11.5.1.

Various procedures are available to find the correction A8 of Algorithm 11.5.
The one we have found very convenient is based on the Newton-Gauss method
(Dahlquist and Bjorck, 1974). In the realm of Newton methods—there are
several of these, the Newton-Gauss and the Newton-Raphson methods being
two of this class—the closure equations (4.9a & b) are written in the form

£(6) = sq (11.61)

where sy is the 7-dimensional prescribed-pose array. We recall here the definition
of the pose array introduced in Section 3.2 to represent sy, namely,

8a= | @ (11.62)
Ply
with q and ¢ defined, in turn, as a 3-dimensional vector invariant of the rota-

tion Q and its corresponding scalar, respectively. Moreover, p is the position
vector of the operation point. Therefore, the 7-dimensional vector f is defined,
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Algorithm 11.5.1

6+ 6(t)
1 find correction Af
if || Af] <€, then stop;
else
660+ A6
go to 1

correspondingly, as

f.,(0) q
£(0)= | fo(6) | = | 2 (11.63)
fp(a) P

where f,(8) denotes the counterpart of q above, as pertaining to the product
Qi1 - Qs of €q.(4.92); fo(8) is the counterpart of g, as pertaining to the same
product; and f,(@) is the sum a; +--- + Q1 - -- Qsas. In principle, any of the
three types of rotation invariants introduced in Section 3.2 can be used in the
above formulation.

Now, eq.(11.61) represents a nonlinear system of seven equations in six un-
knowns. The system is thus overdetermined, but since the four rotational equa-
tions are consistent, this system should admit an exact solution, even if this
solution is complex. For example, if p is specified in s; above as lying outside
of the manipulator reach, then no real solution is possible, and the solution
reported by any iterative procedure capable of handling complex solutions will
be complex.

Upon application of the Newton-Gauss method to find a solution of eq.(11.61),
we assume that we have an initial guess 8°, and based on this value, we gener-
ate a sequence 0', ..., 6%, 8°+! ..., until either a convergence or an abortion
criterion is met. This sequence is generated in the form

0t = 0" + AG* (11.64)
with A8 calculated from
B(0)A0" = —£(6°) + s4 (11.65)

and ® defined as the Jacobian matriz of £f(0) with respect to 8. Note that
by virtue of its definition, ® is a 7 X 6 matrix. A common misconception in
the robotics literature is to confuse this Jacobian matrix with the Jacobian
defined by Whitney (1972) and introduced in eq.(5.10a), which maps joint rates
into the EE twist. The difference between the two Jacobians being essential,
it is made clear in the discussion below. First and foremost, ® is an actual
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Jacobian matrix, while Whitney’s Jacobian, properly speaking, is not. In fact,

In order to find ® in eq.(11.65), we note that by application of the chain
rule,

. of . .
f=_—-60=®0 11.67
50 ( )
However, from the definition of f, we have that f is the time-derivative of the pose
array of the EE, i.e., 8. Moreover, by virtue of eq.(3.78), this time-derivative

can be expressed as a linear transformation of the twist t of the EE, i.e.,
f =Tt (11.682)

with T defined in Section 3.2 as

11.68b
O33 133 ( )

T = [ F 043]
where Q33 and Oy3 denote the 3 x 3 and the 4 x 3 zero matrices, 133 being the
3 x 3 identity matrix. Further, matrix F takes on various forms, depending on
the type of rotation representation adopted, as discussed in Section 3.2.

We write next the left-hand side of eq.(11.68a) as shown in eq.(11.67), and
the twist t of the right-hand side of eq.(11.68a) in terms of 8, as expressed in
eq.(5.9), thereby obtaining

&0 =TJIO (11.69)

which is a relation valid for any value of #. As a consequence, then,

&=TJ (11.70)

whence the relation between the two Jacobians is apparent. Note that eq.(11.68a)
allows us to write

f=TJ6 (11.71)
Upon equating the right-hand sides of egs.(11.71) and (11.68a), we obtain
TJIO =Tt = §4 (11.72)

If linear invariants are used to represent the rotation, then T becomes rank-
deficient if and only if the angle of the rotation becomes 7 (Tandirci et al.,
1994); otherwise, T is always of full rank, and eq.(11.72) leads to

Jo=t (11.73)

which is exactly the same as eq.(5.9). Now we multiply both sides of the fore-
going equation by At, thereby obtaining

JA = tAt (11.74)
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All we need now is, apparently, the product in the right-hand side of the above

equation, namely,
wAt| _ |wAt
= [581) < 421 a7

The product wAt is found below, in terms of the orientation data available:
First and foremost, it is common practice in the realm of Newton methods to
assume that a good enough approximation to the root sought is available, and
hence, A@ is “small.” That is, we assume that [|A8)| is small, where || - ||
denotes any vector norm. Moreover, we use the end-effector pose at ¢t = ¢, as
a reference to describe the desired pose at t = tz4.1, the rotation sought—that
takes the EE to its desired attitude—being denoted by AQ, and defined as
(AQ)Qr = Qqu, when all rotations are expressed in the same frame and Qy
represents the orientation of the EE at ¢ = t;. Thus,

AQ = Q.Qf (11.76)
Now we relate wAt with AQ. To this end, notice that
wAt = vect(2AL) (11.77a)

with © denoting the cross-product matrix of w. On the other hand, AQ is
bound to be a rotation about an axis parallel to a unit vector e, through a
small angle A¢, and hence, from eq.(2.48),

AQ =~ 1+ (APE (11.77b)

where E is the cross-product matrix of e. It is then possible to assume that
Q AL, as appearing in eq.(11.77a), is the skew-symmetric component of AQ, as
given by eq.(11.77b), i.e.,

AQ =1+ QAL

whence
QAL = QuQf - 1
which readily leads to
WAt = vect(QquQT) (11.78)

thereby obtaining the relation sought.
In summary, then, the correction A@ is computed from

JAG = At (11.79)
with At defined as r
At = ["e“(g;Qk)] (11.80)

and Ap defined, in turn, as the difference between the prescribed value py of the
position vector of the operation point and its value py at the current iteration.
Thus, the numerical path-tracking scheme consists essentially of eqs.(11.79) and
(11.80), as first proposed by Pieper (1968). We thus have Algorithm 11.5.2.
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Algorithm 11.5.2

1 AQ « QQF
Ap ¢+ Ppg—Pk

At « [vectéﬁQ) ]

Af  + JMAt
if || A@|| < €, then stop;
else

g « O0+A0

Q. <+ (AQ)Q:
pr  +« p(0)
go to 1

When implementing the foregoing procedure, we want to save processing
time; hence, we aim at fast computations. The computation of the correction A8
involves only linear-equation solving, which was discussed at length in Chapter 4
and need not be discussed further here. The only item that still needs some
discussion is the calculation of the vector norm ||A@8||. Since any norm can
be used here, we can choose the norm that is fastest to compute, namely, the
mazimum norm, also known as the Chebyshev norm, represented as ||A8)| oo,
and defined as

1860 = max{ [6:]} (11.81)

Note that this norm only requires comparisons and no floating-point operations.
The Euclidean norm of an n-dimensional vector, however, requires n multipli-
cations, n — 1 additions, and one square root.

Example 11.5.1 (Path-tracking for arc-welding) With reference to the
arc-welding exercise of Example 11.3.2, we want to use the Fanuc Arc Mate,
whose Denavit-Hartenberg parameters are listed in Toble 5.2. Furthermore, the
welding seam to be tracked is placed well within the workspace of the manipu-
lator. A location found quite suitable for this task was obtained with the aid of
RVS, our Robot Visualization System. This location requires that the coordinate
frame Fc of Fig. 11.4 have its azes parallel pairwise to those of the robot base,
Fi. The latter is defined according to the Denavit-Hartenberg notation, and so
Zy coincides with the axis of the first revolute; it is, moreover, directed upwards.
The position found for the origin Oc of Fc, of position vector o, is given in Fy
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Figure 11.7: Contour solutions of the Fanuc Arc Mate robot at the given EE
pose

as

0.5

Find the time-histories of all the joint variables that will perform the desired
operation with the tip of the electrode traversing the intersection curve at the
constant speed of v = 0.1 m/s. Furthermore, plot the variation of the condition
number of the Jacobian matriz along the path.

x -1.0
[oh = y:| = —0.1} m

Solution: The robot at hand was studied in Section 9.7, where it was found not
to be of the decoupled type. In fact, this robot does not admit a closed-form
inverse kinematics solution, and hence, the foregoing iterative procedure is to
be used.

At the outset, we calculate all inverse kinematics solutions at the pose cor-
responding to ¢ = 0 using the bivariate-equation approach of Section 9.4. This
pose is defined by the orthogonal matrix Q and the position vector p given
below:

0.6030 0 -—-0.7977 —0.5500
[Qh E[eb ey en]= 0 1 0 5 [p]1: —0.100 m
0.7977 0  0.6030 0.8969
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with both Q and p given in robot-base coordinates. The contours for the above
pose, which were obtained using the procedure of Section 9.4, are shown in
Fig. 11.7, the eight solutions obtained being summarized in Table 11.3, which
includes the condition number of the Jacobian, x(J), of each solution. Note
that the calculation of k(J) required computing the characteristic length of the
robot, as explained in Section 5.8. This length, as calculated in that section,

turned out to be L = 0.3573 m.

Table 11.3: Inverse kinematics solutions

given EE pose

of the Fanuc Arc Mate

robot for the

1| &(J) 01 02 03
11 4.74 19.9039° 124.909° —176.484°
2| 4.85 —3.6664° 124.723° —173.071°
3] 1112 —154.951° —67.5689° | —135.549°
4| 6.31 —176.328° —63.4487° | —129.817°
5 4.79 —176.341° 75.1632° —76.6692°
6| 520 —153.567° 73.4546° —72.5407°
7| 868 —3.6362° | —129.644° —32.9672°
8| 9.94 18.9031° | —131.096° —26.8084°

i 04 05 06

1 16.1379° —102.29° —15.8409°

2 177.019° 101.19° —177.208°

3 141.716° 146.966° 17.754°

4 —4.5893° —140.319° —178.681°

5 3.7343° 51.4104° —179.877°

6 —153.868° —53.7328° —0.5046°

7 —175.011° —144.428° 178.133°

8 —28.6793° 147.417° 13.0786°

Now, we have eight solutions at our disposal, from which we must choose
one for path-tracking. In the absence of any criterion to single out one specific
solution, we can pick up the solution with the lowest condition number. If we
do this, we end up with solution 1 in Table 11.3. However, when we attempted
to track the given path with this solution, it turned out that this solution
encountered a singularity and was hence discarded. Of the seven remaining
solutions, solution 5 has the lowest condition number; this solution led to a
singularity-free trajectory.

Once the appropriate solution is chosen, the trajectory can be tracked with
the aid of Algorithm 11.5.2. Here, we need a discrete set of poses at equal
time-intervals. Note that we can produce such a set at equal intervals of angle
¢ because we have expressions for the pose variables in terms of this angle.
In order to obtain this set at equal time-intervals, then, we need angle ¢ as a
function of time, i.e., p(¢). In the sequel, we will also need the time T needed
to complete the task. Now, since the speed of the electrode tip is constant and
equal to vg, the time T is readily obtained by dividing the total length [ of the
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curve by vg. The length of the curve, in turn, can be computed as s(27), where
function s(y) denotes the arc length as a function of angle p, i.e.,

%]

o) = [ Il (11.82)
We thus obtain, by numerical quadrature,

l=s(2r) =1.0257T m

Hence, the total time is

Now, in order to obtain ¢(t), we first calculate § as

._ds _dsdp _ . ds

_ s _ _ % 1.
= T dpat ~ Pap (11.832)

Furthermore, we note that ds/dy = ||r' ()|, which allows us to write § as

$ = ¢l (o)

Moreover, ||r'(¢)|| was found in eq.(11.39b) to be

' ()l = rG(y)

$ thus becoming
$=rGy (11.83b)

Furthermore, we recall the expression derived for G(y) in eq.(11.39¢). This
expression, along with the constancy condition on §, i.e., § = vg, leads to

royv/ 14+ (A@sing)? = v

where r is the radius of the cylinder. Upon solving for ¢ from the above equation,

we obtain
. _ Vo p% —2\cosyp
=5 p% — 2\ cosp + X2sin?

which is a nonlinear first-order differential equation for (¢). Its initial value can
be assigned as p(0) = 0, thereby formulating a nonlinear first-order initial-value
problem. The numerical solution of the foregoing problem is nowadays routine
work, which can be handled with suitable software, e.g., Matlab (Hanselman
and Littlefied, 2001). Upon solving this equation, a data file is produced that
contains the time-history of ¢. The plot of ¢ vs. nondimensional time is dis-
played in Fig. 11.8(a). Since the variations of ¢(t) are relatively small, this plot
provides little information on the time-history of interest. A more informative
plot, that of ¢(t), is included in Fig. 11.8(b) for this reason. Apparently, ¢ turns
out to be the sum of a linear and a periodic term.
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With () known as a function of time, we can now specify the pose of the
end-effector, i.e., p and Q, as functions of time.

The whole trajectory was tracked with the robot at hand using the algorithm
outlined in this section. With the aid of this algorithm, we produced the plots
of Fig. 11.9. Also, the time-history of the condition number of the manipulator
Jacobian was computed and plotted in Fig. 11.10. Apparently, the condition
number of the Jacobian remains within the same order of magnitude throughout
the whole operation, below 10, thereby showing that the manipulator remains far
enough from singularities during this task—the condition number becomes very
large when a singularity is approached, becoming unbounded at singularities.
A rendering of the welding seam with the Frenet-Serret triad at a sample of
points is displayed in Fig. 11.11. It is noteworthy that the torsion of the path
is manifested in this figure by virtue of the inclination of the Z axis, which
changes from point to point. In a planar curve, this axis would remain at a
fixed orientation while traversing the curve.

8 T - T T T T T
L I T S e :
(rad) §
4 - e e T -
ol T S I MRS A _
0 1 1 i 1 | | 1 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(a)

07 ; ; ! ; ! ;
(rad/s) 0.65

0.6

O I S i S
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 11.8: Plot of ¢ vs. nondimensional time

11.6 Exercises

11.1 A PUMA 560 robot, with the DH parameters of Table 11.4, is used to
perform a gluing operation as indicated below: A nozzle dispensing the
glue is rigidly attached to the gripper of the robot. The tip of the nozzle,
point P, is to trace a helicoidal path at a constant rate of 50 mm/s.
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Figure 11.9: Time-histories of the joint variables (in degrees) of the Fanuc Arc
Mate robot used to track a warped curve for arc-welding vs. nondimensional
time

Furthermore, the center of the wrist is located at a point C, fixed to a
Frenet-Serret coordinate frame. In this frame, the coordinates of C are
(0, —50, 86.7) mm. Moreover, the path to be traced by point P is given
as

z=acos¥, y=asindg, z=>09, 0 <9 < x/2

with the values a = 300 mm, b = 800/7 mm.
(a) Decide where to locate the robot base with respect to the path so
that the latter will lie well within the workspace of the robot. Then,

produce plots of 8; vs. t, for 0 <t < T, where T is the time it takes
to traverse the whole trajectory, for i = 1,2,...,6.

Table 11.4: DH parameters of a PUMA 560 robot

Joint % | a; (deg) | @; (m) | b; (m)
1 90 0 0.660
2 0 0.432 0
3 90 0.020 0.149
4 90 0 0.432
5 90 0 0
6 0 0 0.056
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Figure 11.10: Time-history of the condition number of the Jacobian matrix
during an arc-welding operation vs. nondimensional time

(b) Produce plots of 6; vs. t in the same time interval for all six joints.
(c) Produce plots of §; vs. t in the same time interval for all six joints.

11.2 A bracket for spot-welding, shown in Fig. 11.12, is rigidly attached to the
end-effector of a robotic manipulator. It is desired that point P of the
bracket follow a helicoidal path I', while keeping the orientation of the
bracket with respect to I" as indicated below: Let B = {io,jo,ko} and
Fr = {i7,j7, k7 } be triads of unit orthogonal vectors fixed to the base of
the robot and to the bracket, respectively. Moreover, let F = {e;,e,, €}
be the Frenet-Serret triad of I', given as

ey = —0.6sinwig + 0.6 cos pjo + 0.8kg
e, = — cosip — sin @jo
ep = 0.8sinpig — 0.8 cos pjo + 0.6kg
where ¢ is a given function of time, ().
Furthermore, the orientation of the bracket with respect to I' is to be kept
constant and given in terms of the Frenet-Serret triad as
iz = 0.933e; + 0.067e,, — 0.354e,
Jj7 = 0.067e; + 0.933e,, + 0.354e;
k7 = 0354et ot 0354en + 0866eb

Additionally, R and S(t) denote the rotation matrices defining the orien-
tation of F7 with respect to F and of F with respect to B, respectively.
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Figure 11.11: Welding seam with Frenet-Serret frames

(a) Find the matrix representation of S(¢) in B.
(b) Find the matrix representation of R in F.

(c) Let Q(t) denote the orientation of F7; with respect to B. Find its
matrix representation in B.

(d) Find the Darboux vector § of the path, along with its time-derivative,
4, in base-fixed coordinates. Note: You can do this in several ways,
as discussed in Section 11.2. Choose the one that will allow you to use
previously computed results, thereby simplifying the computations.

11.3 The parametric equations of a curve are given as
r=2t, y=1>, 2=13/3

where t is time. A robotic manipulator is to follow this trajectory so that
its gripper keeps a constant orientation with respect to the Frenet-Serret
frame of the curve.

(a) Determine the unit vector parallel to the axis of rotation and the
angle of rotation of the gripper as functions of time.

(b) Find the angular velocity and angular acceleration of the gripper as
functions of time.

11.4 Derive eqs.(11.45a & b).
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11.5

11.6

11.7

Figure 11.12: A bracket for spot-welding

Find the spline approximation of the helix of Example 11.3.1. Then, plot
the approximation errors of the Cartesian coordinates of points of the
helix, for N = 5, 11, and 21 equally spaced supporting points. In order to
assess the orientation error, compute the Darboux vectors of the spline,
45, and of the helix, ;. The approximation error of the orientation is
now defined as

eo = max{[|ds(p) —~ on ()}
with ¢ defined as in Example 11.3.1.

Find the spline approximation of the curvature, torsion, and Darboux
vector of the curve introduced in Example 11.3.2. Find expressions for the
exact values of these variables and plot the approximation errors, for 5,
10, and 20 equally spaced supporting points vs. . In the error definitions
given below, subscript e indicates ezact value, subscript s spline value:

er = Ks(p) = Ke(ep)

€r 7-9(90) —Te (‘10)
es = [|05() — de ()|

From the plots of the time-histories of the joint angles calculated in Exam-
ple 11.5.1, it is apparent that, with the exception of 84, which has a linear
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component, these histories are periodic. Repeat Example 11.5.1, but now
using a spline approximation of the welding seam, with N = 5, 10, and
20 supporting points. With this spline approximation, calculate the pose,
the twist, and the twist-rate at each supporting point. Now, calculate val-
ues of 6, 6, and 8 at each of these supporting points by means of inverse
kinematics. Compare the values thus obtained of @ with those derived
from the linear relation between the function values and the values of its
second derivative at the supporting points when using a cubic spline.

11.8 The decoupled robot of Fig. 4.19 is to perform an arc-welding operation

along a welding seam that requires its wrist center C to travel at a constant
speed of 1 m/s along a line joining points A and B, not shown in that
figure, while keeping the EE holding the electrode at a constant orientation
with respect to the base frame. Moreover, the seam is to be traversed
according to the following schedule: With point C located at a point A’
on the extension of AB, a distance of 250 mm from A, point C approaches
A with a cycloidal motion at the specified speed; upon reaching B, point
C decelerates with a cycloidal motion as well, until it reaches a point B’ in
the other extension of AB, 250 mm from B, with zero speed. The position
vectors of points A and B, denoted by a and b, respectively, are given, in
base coordinates, as

500 1,200
a=|-500|, b=| 0
500 1,200

in mm. For the above-given data, find the time-histories of all joint vari-
ables.

11.9 Derive expressions (11.45a & b).

11.10 If linear invariants are used to represent the desired pose sq, then q =0

and ¢o = 1 when the angle of rotation becomes 7. Under these conditions,
matrix T of eq.(11.72) becomes rank-deficient, this equation thus not nec-
essarily leading to eq.(11.73). One way of coping with this algorithmic
singularity consists in redefining axis X; of the DH notation by rotating
the current X, axis by an angle A#; about Z;, which does not affect the
remaining variables and parameters of the said notation.

Find the optimum value of A8, that will take T “farthest” from its current
rank-deficiency.



Chapter 12

Dynamics of Complex
Robotic Mechanical
Systems

12.1 Introduction

The subject of this chapter is the dynamics of the class of robotic mechanical
systems introduced in Chapter 10 under the generic name of complex. Notice
that this class comprises serial manipulators not allowing a decoupling of the
orientation from the positioning tasks. For purposes of dynamics, this decou-
pling is irrelevant and hence, was not a condition in the study of the dynamics of
serial manipulators in Chapter 7. Thus, serial manipulators need not be further
studied here, the focus being on parallel manipulators and rolling robots. The
dynamics of walking machines and multifingered hands involves special features
that render these systems more elaborate from the dynamics viewpoint, for they
exhibit a time-varying topology. What this means is that these systems include
kinematic loops that open when a leg takes off or when a finger releases an
object and open chains that close when a leg touches ground or when a finger
makes contact with an object. The implication here is that the degree of free-
dom of these systems is time-varying. The derivation of such a mathematical
model is discussed in (Pfeiffer et al, 1995), but is left out in this book.

The degree of freedom (dof) of the mechanical systems studied here is thus
constant. Now, the two kinds of systems studied here pertain to very different
types, for parallel manipulators fall into the realm of holonomic, while rolling
robots into that of nonholonomic, mechanical systems. In order to better un-
derstand this essential difference between these two types of systems, we give
below a summary of the classification of mechanical systems at large.



470 12. Dynamics of Complex Robotic Mechanical Systems

12.2 Classification of Robotic Mechanical Sys-
tems with Regard to Dynamics

Because robotic mechanical systems are a class of general mechanical systems,
a classification of the latter will help us focus on the systems motivating this
study. Mechanical systems can be classified according to various criteria, the
most common one being based on the type of constraints to which these systems
are subjected. In this context we find holonomic vs. nonholonomic and sclero-
nomic vs. rheonomic constraints. Holonomic constraints are those that are
expressed either as a system of algebraic equations in displacement variables,
whether angular or translational, not involving any velocity variables, or as a
system of equations in velocity variables that nevertheless can be integrated
as a whole to produce a system of equations of the first type. Note that it is
not necessary that every single scalar equation of velocity constraints be inte-
grable; rather, the whole system must be integrable for the system of velocity
constraints to lead to a system of displacement constraints. If the system of ve-
locity constraints is not integrable, the constraints are said to be nonholonomic.
Moreover, if a mechanical system is subject only to holonomic constraints, it is
said to be holonomic; otherwise, it is nonholonomic. Manipulators composed of
revolute and prismatic pairs are examples of holonomic systems, while wheeled
robots are usually nonholonomic systems. On the other hand, if a mechanical
system is subject to constraints that are not explicit functions of time, these
constraints are termed scleronomic, while if the constraints are explicit functions
of time, they are termed rheonomic. For our purposes, however, this distinction
is irrelevant.

In order to understand better one more classification of mechanical systems,
we recall the concepts of generalized coordinate and generalized speed that were
introduced in Subsection 7.3.2. The generalized coordinates of a mechanical
system are all those displacement variables, whether rotational or translational,
that determine uniquely a configuration of the system. Note that the set of
generalized coordinates of a system is not unique. Moreover, various sets of
generalized coordinates of a mechanical system need not have the same number
of elements, but there is a minimum number below which the set of generalized
coordinates cannot define the configuration of the system. This minimum num-
ber corresponds, in the case of holonomic systems, to the degree of freedom of
the system. Serial and parallel manipulators coupled only by revolute or pris-
matic pairs are holonomic, their joint variables, grouped in vector 8, playing
the role of generalized coordinates, while their joint rates, grouped in vector 9,
in turn, play the role of generalized speeds. Note that in the case of parallel
manipulators, not all joint variables are independent generalized coordinates.
In the case of nonholonomic systems, on the other hand, the number of general-
ized coordinates needed to fully specify their configuration exceeds their degree
of freedom by virtue of the lack of integrability of their kinematic constraints.
This concept is best illustrated with the aid of examples, which are included in



12.3 The Structure of the Dynamics Models of Holonomic Systems 471

Section 12.5. Time-derivatives of the generalized coordinates, or linear combi-
nations thereof, are termed the generalized speeds of the system. If the kinetic
energy of a mechanical system is zero when all its generalized speeds are set
equal to zero, the system is said to be catastatic. If, on the contrary, the kinetic
energy of the system is nonzero even if all the generalized speeds are set equal to
zero, the system is said to be acatastatic. All the systems that we will study in
this chapter are catastatic. A light robot mounted on a heavy noninertial base
that undergoes a controlled motion is an example of an acatastatic system, for
the motion of the base can be assumed to be insensitive to the dynamics of the
robot; however, the motion of the base does affect the dynamics of the robot.

Another criterion used in classifying mechanical systems, which pertains
specifically to robotic mechanical systems, is based on the type of actuation. In
general, a system needs at least as many independent actuators as degrees of
freedom. However, instances arise in which the number of actuators is greater
than the degree of freedom of the system. In these instances, we speak of
redundantly actuated systems. In view of the fundamental character of this
book, we will not study redundant actuation here; we will thus assume that the
number of independent actuators equals the degree of freedom of the system.

The main results of this chapter are applicable to robotic mechanical systems
at large. For brevity, we will frequently refer to the objects of our study simply
as systems.

12.3 The Structure of the Dynamics Models of
Holonomic Systems

We saw in Section 7.6 that the mathematical model of a manipulator of the serial
type contains basically three terms, namely, one linear in the joint accelerations,
one quadratic in the joint ratcs, and onc arising from the environment, i.e.,
from actuators, dissipation, and potential fields such as gravity. We show in
this section that in fact, the essential structure of this model still holds in the
case of more general mechanical systems subject to holonomic constraints, if we
regard the rates of the actuated joints as the independent generalized speeds of
the system. Nonholonomic robotic systems are studied in Section 12.5.

First, we will assume that the mechanical system at hand is composed of
r rigid bodies and its degree of freedom is n. Henceforth, we assume that
these bodies are coupled in such a way that they may form kinematic loops; for
this reason, such systems contain some unactuated joints. Definitions similar to
those of Section 7.3.1 are henceforth adopted. In this vein, the manipulator mass
matrix of that section becomes now, more generically, the 6r x 6r system mass
matriz M, the 6r X 6r system angulor velocity matriz W, and the 6r-dimensional
system twist vector t being defined likewise.

We assume further that the total number of joints, active and passive, is
m > n. The m-dimensional array @ of joint variables, associated with both
actuated and unactuated joints, is thus naturally partitioned into two subarrays,
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the n-dimensional vector of actuated joint variables 8, and its m'-dimensional
unactuated counterpart 6,,, with m’ = m — n, namely,

0 — [ZZ] (12.1)

We can now set up the mathematical model of the system at hand using
the natural orthogonal complement, as introduced in Section 7.5. Since the
system under study has n degrees of freedom, the model sought must be a
system of n second-order ordinary differential equations. We can proceed to
derive this model as we did in Section 7.5, by regarding all joints first as if they
were independent, but taking into account that only n of the total m joints
are actuated. We do this by introducing a vector of constraint forces, as is
done in the realm of Lagrangian dynamics (T6rok, 2000). In this vein, we first
represent the twists of all the moving links as linear transformations of the joint-
rate vector @, then assemble all the individual 6-dimensional twist arrays into
the 6r-dimensional array t defined above as the system twist. We thus end up
with a relation of the form )

t=U(0)0 (12.2)

where U(8) is the 6r x m twist-shaping matrix, playing a role similar to that of
matrix T of Section 7.5. Moreover, the constraints relating all joint rates can
be cast in the form

A(0)6 =0, (12.3)

where A(6) is a p X m matrix, whereby p < m, with nullity—the nullity of a
matrix is the dimension of its nullspace—v = n, and 0, is the p-dimensional
zero vector. Given the nullity of A(8), up to n of the m components of 8 can
be assigned freely without violating the constraints (12.3), which is compatible
with the assumption on the dof of the system. Note that, in setting up the
foregoing p constraints on the joint rates, the number p depends on the topology
of the system, i.e., on its number of links; on its number of joints; and on how
the links are coupled, so as to form kinematic loops.

In applying the procedure of the natural orthogonal complement to the con-
strained system, we end up with a system of m second-order ordinary differential
equations, namely, the Euler-Lagrange equations of a system constrained by the
relations (12.3), which thus takes the form

10+ 6(0,8)0 = + 8+ 5+ ITw" + AT (12.42)

The above equation contains terms that are familiar from Section 7.5, except
for the last term of the right-hand side. This term accounts for the generically
termed constraint forces and amounting to constraint joint torques and forces
that must be exerted at all joints in order to maintain the topology of the
system. Vector A is termed the vector of Lagrange multipliers in the realm of
Lagrangian dynamics. In the above equation, the definitions below, similar to
those of eqs.(7.58) and (7.59), have been introduced:

1(0) = UTMU (12.4b)
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C(0,6) = UT™™MU + UTWMU (12.4¢)
F=UTwA, §=UTwP, 35=UTwC (12.4d)

Moreover, w4, wP, w&, and w" are the various types of wrenches acting on

the system: exerted by the actuators; stemming from dissipation effects; due
to the gravity field; and exerted by the environment, respectively. In turn, Jis
the 6 x m Jacobian matrix mapping the system joint rates into the end-effector
twist, while w" is assumed applied onto the end-effector.

Upon resorting to the kinematics of the system, it is possible to express the
vector of joint rates 0 as a linear transformation of the vector of actuated joint
rates 8,, namely!, .

0=0(0,)0, (12.5)

where we have assumed that, from the geometry of the system, 8, has been
solved for in terms of 6,. Further, upon substitution of eq.(12.5) into eq.(12.3),
we obtain .

A(G)Q(ea)ea =0,

which must hold for any 0,, given the dof of the system. As a consequence,
then,
A(G)G(Ba) = Opn (12'6)

and hence, ®(0,) is an orthogonal complement of A(8), which we can also call a
natural orthogonal complement. Notice, however, that contrary to the natural
orthogonal complement U, which maps the joint-rate vector onto the system
twist, ® maps the space of actuated joint rates into that of the system joint
rates. Apparently, i ) ) o
0=0(0,0,+06(,,60,)0, (12.7)

Upon substitution of eq.(12.7) into eq.(12.4a), we obtain
106, +106, + C(0,,0,)00, =+ + 6 + 4+ ITw" + ATA
Further, the term of constraint forces is eliminated from the above equations

upon multiplying both sides of the above equation by @7 from the left, thus
obtaining the mathematical model sought, i.e.,

10, +COy =7+ 6+~ +ITwW (12.8a)
with the definitions below:
I=T™™MT, C=T"MT+T'"WMT, J=7J0, (12.8b)
T=0T# §=075 ~=07T5, (12.8c)
and
T=U® (12.8d)

That is, the mathematical model governing the dynamics of any holonomic
robotic mechanical system is formally identical to that of eq.(7.61) obtained for
serial manipulators.

1@ is not to be confused with the matrix defined in eqs.(10.54a & b).
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12.4 Dynamics of Parallel Manipulators

We illustrate the modeling techniques of mechanical systems with kinematic
loops via a class of systems known as parallel manipulators. While parallel
manipulators can take on a large variety of forms, we focus here on those termed
platform manipulators, with an architecture similar to that of flight simulators.
In platform manipulators we can distinguish two special links, namely, the base
B and the moving platform M. Moreover, these two links are coupled via six
legs, with each leg constituting a six-axis kinematic chain of the serial type,
as shown in Fig. 12.1, whereby a wrench w", represented by a double-headed
arrow, acts on M and is applied at Cpq, the mass center of M. This figure
shows the axes of the revolutes coupling the legs to the two platforms as forming
regular polygons. However, the modeling discussed below is not restricted to this
particular geometry. As a matter of fact, these axes need not even be coplanar.
On the other hand, the architecture of Fig. 12.1 is very general, for it includes
more specific types of platform manipulators, such as flight simulators. In these,
the first three revolute axes stemming from the base platform have intersecting
axes, thereby giving rise to a spherical kinematic pair, while the upper two
axes intersect at right angles, thus constituting a universal joint. Moreover, the
intermediate joint in flight simulators is not a revolute, but rather a prismatic
pair, which is the actuated joint of the leg. A leg kinematically equivalent to that
of flight simulators can be obtained from that of the manipulator of Fig. 12.1,
if the intermediate revolute has an axis perpendicular to the line connecting
the centers of the spherical and the universal joints of the corresponding leg,
as shown in Fig. 12.2. In flight simulators, the pose of the moving platform
is controlled by hydraulic actuators that vary the distance between these two
centers. In the revolute-coupled equivalent leg, the length of the same line is
controlled by the rotation of the intermediate revolute.

Shown in Fig. 12.3 is the graph of the system depicted in Fig. 12.1. In that
graph, the nodes denote rigid links, while the edges denote joints. By application
of Euler’s formula for graphs (Harary, 1972), the number : of independent loops
of a system with many kinematic loops is given by

L=j—1+1 (12.9)

where j is the number of revolute and prismatic joints and [ is the number of
links.

Thus, if we apply Euler’s formula to the system of Fig. 12.1, we conclude
that its kinematic chain contains five independent loops. Hence, while the chain
apparently contains six distinct loops, only five of these are independent. More-
over, the degree of freedom of the manipulator is six. Indeed, the total number
of links of the manipulator is I = 6 x 5 + 2 = 32. Of these, one is fixed, and
hence, we have 31 moving links, each with six degrees of freedom prior to cou-
pling. Thus, we have a total of 31 x 6 = 186 degrees of freedom at our disposal.
Upon coupling, each revolute removes five degrees of freedom, and hence, the
36 kinematic pairs remove 180 degrees of freedom, the manipulator thus being
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Figure 12.1: A platform-type parallel manipulator

left with 6 degrees of freedom. We derive below the mathematical model gov-
erning the motion of the overall system in terms of the independent generalized
coordinates associated with the actuated joints of the legs.

We assume, henceforth, that each leg is a six-axis open kinematic chain with
either revolute or prismatic pairs, only one of which is actuated, and we thus
have as many actuated joints as degrees of freedom. Furthermore, we label the
legs with Roman numerals I, II, ..., VI and denote the mass center of the
mobile platform M by C4, with the twist of M denoted by t 4 and defined at
the mass center. That is, if ¢y denotes the position vector of Cp¢ in an inertial
frame and ¢y its velocity, while w4 is the angular velocity of M, then

tay = [‘:ﬁ] (12.10)

Next, the Newton-Euler equations of M are derived from the free-body
diagram shown in Fig. 12.4. In this figure, the legs have been replaced by the
constraint wrenches {w§}¥! acting at point Cx4, the governing equation thus
taking the form of eq.(7.5¢), namely,

VI
Mumtam = —WaMuptm +w” + > w§ (12.11)
J=I
with w" denoting the external wrench acting on M. Furthermore, let us denote
by qs the variable of the actuated joint of the Jth leg, all variables of the six
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Figure 12.2: A leg of a simple platform-type parallel manipulator

actuated joints being grouped in the 6-dimensional array q, i.e.,

a=(q qu - (IVI]T (12.12)

Now, we derive a relation between the twist t s and the active joint rates, ¢,
for J =1, 1I, ..., VI. To this end, we resort to Fig. 12.5, depicting the Jth leg
as a serial-type, six-axis manipulator, whose twist-shape relations are readily
expressed as in eq.(5.9), namely,

J;05=tpn, J=I1I,... VI (12.13)

where J; is the 6 x 6 Jacobian matrix of the Jth leg.

In Fig. 12.5, the moving platform M has been replaced by the constraint
wrench transmitted by the moving platform onto the end link of the Jth leg,
—wS", whose sign is the opposite of that transmitted by this leg onto M by virtue
of Newton’s third law. The dynamics model of the manipulator of Fig. 12.5 then
takes the form

IJéJ—%-CJ(eJ,GJ)BJ =Ty —J?w?, J=I,1I,...,VI (12.14)

where I; is the 6 x 6 inertia matrix of the manipulator, while C; is the matrix
coefficient of the inertia terms that are quadratic in the joint rates. Moreover,
6, and r; denote the 6-dimensional vectors of joint variables and joint torques,



12.4 Dynamics of Parallel Manipulators 477

Figure 12.4: The free-body diagram of M

namely,
F 01
011 :
072
6,=| . |, ms= Té’“ (12.15)
b6 :
| 0 ]

with subscript Jk& denoting in turn the only actuated joint of the Jth leg, namely,
the kth joint of the leg. If we now introduce e, defined as a unit vector all
of whose entries are zero except for the kth entry, which is unity, then we can
write

T = fregk (12.16)
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Figure 12.5: The serial manipulator of the Jth leg

If the actuated joint is prismatic, as is the case in flight simulators, then f; is
a force; if this joint is a revolute, then f; is a torque.

Now, since the dimension of q coincides with the degree of freedom of the
manipulator, it is possible to find, within the framework of the natural orthog-
onal complement, a 6 x 6 matrix L ; mapping the vector of actuated joint rates
q into the vector of Jth-leg joint-rates, namely,

0;=Lyq, J=1I,1I,...,VI (12.17)

The calculation of L will be illustrated with an example.
Moreover, if the manipulator of Fig. 12.5 is not at a singular configuration,
then we can solve for w§ from eq.(12.14), i.e.,

w§ =3;7(r; —1,8; - C;0;) (12.18)

in which the superscript —7T stands for the transpose of the inverse, or equiv-
alently, the inverse of the transpose, while Iy = I;(8;) and C; = C;(64,8,).
Further, we substitute w§ as given by eq.(12.18) into eq.(12.11), thereby ob-
taining the Newton-Euler equations of the moving platform free of constraint
wrenches. Additionally, the equations thus resulting now contain inertia terms
and joint torques pertaining to the Jth leg, namely,

vI
MM{’,MZ—WMMMtM +WW+ZJ;T(TJ—IJ9J—CJ9J) (12.19)
J=I
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Still within the framework of the natural orthogonal complement, we set up the
relation between the twist t g and the vector of actuated joint rates q as

tpm =Tq (12.20)
which upon differentiation with respect to time, yields
tam =Tg+Tq (12.21)

In the next step, we substitute taq and its time-derivative as given by
eqs.(12.20 & 12.21) into eq.(12.19), thereby obtaining

Mum(TG + Tq) + WaMuTq

vI vI
+3 357185+ Cr05) =wW + 33577 (12.22)
J=I J=I

Further, we recall relation (12.17), which upon differentiation with respect
to time, yields . )
0;=L;q+L;q (12.23)
Next, relations (12.17 & 12.23) are substituted into eq.(12.22), thereby obtaining
the model sought in terms only of actuated joint variables. After simplification,
this model takes the form

Mu T + MaTq + WM Tq

J=VI . vI

+ Y 3T+ LLa+ Colyq) =w? + 3 3;Tr,  (1224)
J=I J=I

where now Iy =1;(q) and C; = Cjy(q,q).

Our final step in this formulation consists in deriving a reduced 6 x 6 model
in terms only of actuated joint variables. Prior to this step, we note that from
egs.(12.13), (12.17), and (12.20),

L;=J;'T (12.25)

Upon substitution of the above relation into eq.(12.24) and multiplication of
both sides of eq.(12.24) by T from the left, we obtain the desired model in the
form of egs.(12.8a), namely,

VI
M(q)d + N(a,@)qg=7"+ Y Lyr; (12.26)
J=I
with the 6 x 6 matrices M(q), N(q, q), and vector " defined as
VI
M(q) = T"Mu]T + Y LILL, (12.27a)
J=I
. VI *
N(q,4) = T"(MuT + WAMMT) + > LIA,L; + C/Ly)  (12.27b)
J=I

™V =1TwW (12.27¢)
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Alternatively, the foregoing variables can be expressed in a more compact form
that will shed more light on the above model. To do this, we define the 36 x 36
matrices I and C as well as the 6 x 36 matrix L, the 6 X 6 matrix A, and the
6-dimensional vector ¢ as

I= diag(II, IH, vaey IVI) (1228&)
C= diag(CI, CII, ey CV]) (12.28b)
LE[L] LU LV]] (12.28(})
A= [LIeIk Liem: ... LVIeV[k] (12.28d)
d) = [f] fII cee fV]]T (12.286‘)
and hence,
M(q) = T"TMMT + LTIL (12.29a)
N(q,q) = TT(MpmT + WAMMT) + LTIL + L7C(q, )L (12.29b)
vI
Y Lir;=A¢ (12.29¢)
J=I

whence the mathematical model of eq.(12.26) takes on a more familiar form,
namely,
M(q)§ +N(g,@)g=7" + A¢ (12.30)

Thus, for inverse dynamics, we want to determine ¢ for a motion given by
q and q, which can be done from the above equation, namely,

¢ = A" [M(a)d + N(q,a)q — "] (12.31)

Notice, however, that the foregoing solution is not recursive, and since it requires
linear-equation solving, it is of order n®, which thus yields a rather high numer-
ical complexity. It should be possible to produce a recursive algorithm for the
computation of ¢, but this issue will not be pursued here. Moreover, given the
parallel structure of the manipulator, the associated recursive algorithm should
be parallelizable with multiple processors.

For purposes of direct dynamics, on the other hand, we want to solve for
q from eq.(12.30). Moreover, for simulation purposes, we need to derive the
state-variable equations of the system at hand. This can be readily done if we
define r = q, the state-variable model thus taking on the form

q=r (12.32a)
=M -N(q,r)r + 7% + A¢) (12.32b)

In light of the matrix inversion of the foregoing model, then, the complexity of
the forward dynamics computations is also of order n.

Example 12.4.1 Derive matriz Ly of eq.(12.17) for a manipulator having siz
identical legs like that of Fig. 12.2, the actuators being placed at the fourth joint.
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Solution: We attach coordinate frames to the links of the serial chain of the
Jth leg following the Denavit-Hartenberg notation, while noting that the first
three joints intersect at a common point, and hence, r1 = rs = rz. According
to this notation, we recall, vector r; is directed from the origin O; of the ith
frame to the operation point of the manipulator, which in this case, is Cat. The
Jacobian matrix of the Jth leg then takes the form

€3 €s e3 €4 ey €g

J;=
J €1 XTI1] €3 XTI] €3 XTIr; €4 XTy €5 XTIy € XTIj

J

the subscript J of the array in the right-hand side reminding us that the vectors
inside it pertain to the Jth leg. Thus, matrix J; maps the joint-rate vector of
the Jth leg, 87, into the twist ts of the platform, i.e.,

J Jé 7 =tMm
Clearly, the joint-rate vector of the Jth leg is defined as
9J = [9J1 912 9J3 9J4 9J5 9J6 ]T

Now, note that except for 64, all joint-rates of this leg are passive and thus
need not appear in the mathematical model of the whole manipulator. Hence,
we should aim at eliminating all joint-rates from the above twist-rate relation,
except for the one associated with the active joint. We can achieve this if we
realize that

rjyxenpte;xrn=0, i=1,23

Further, we define a 3 x 6 matrix Ay as
Aj= [RJ] ].]

with Rj; defined, in turn, as the cross-product matrix of rj;. Now, upon
multiplication of Jy by A from the left, we obtain a 3 x 6 matrix whose first
three columns vanish, namely,

AjJ;=[0 0 O esx(rq—r;) esx(rs—ry) esx(rs—ry)l;

and hence, if we multiply both sides of the above twist-shape equation by A
from the left, we will obtain a new twist-shape equation that is free of the first
three joint rates. Moreover, this equation is 3-dimensional, i.e.,

[e4 X (I‘4 — I‘l)é4 +e5 X (I‘5 - I‘1)é5 + eg X (I‘5 - r1)9.6].] = —Wpm X1+ Epm

where the subscript J attached to the brackets enclosing the whole left-hand side
again reminds us that all quantities therein are to be understood as pertaining
to the Jth leg. For example, e4 is to be read eys. Furthermore, only 64 is
associated with an active joint and denoted, henceforth, by ¢y, i.e.,

q7 =04 (12.33)



482 12. Dynamics of Complex Robotic Mechanical Systems

Tt is noteworthy that the foregoing method of elimination of passive joint rates
is not ad hoc at all. While we applied it here to the elimination of the three
joint rates of a spherical joint, it has been formalized and generalized to all six
lower kinematic pairs (Angeles, 1994). )

We have now to eliminate both 855 and 676 from the foregoing equation.
This can be readily accomplished if we dot-multiply both sides of the same
equation by vector uy defined as the cross product of the vector coefficients of
the two passive joint rates, i.e.,

uJE[e5 x(r5—r1)]J X[ee X(I‘5—I‘1)]J

We thus obtain a third twist-shape relation that is scalar and free of passive
joint rates, namely,

uy - [es X (rs —11)04]s = uy - (~war X g1 + Epq)
The above equation is clearly of the form
(141 =¥5tm, =01y, J=IL1II,...,VI

with {7 and y; defined, in turn, as

CJEUJ~€J4X(PJ4-rJ1) (12.34&)
— | 7Tyt Xuy
yYJs = |: 1y :| (12.34b)

Upon assembling the foregoing six scalar twist-shape relations, we obtain a
6-dimensional twist-shape relation between the active joint rates of the manip-
ulator and the twist of the moving platform, namely,

Za =Yty
with the obvious definitions for the two 6 x 6 matrices Y and Z given below:
yi

T
y
Y a

Il

,» Z=diag((r, Ciry -+, Qvr)
Yvr
We now can determine matrix T of the procedure described above, as long as

Y is invertible, in the form
T=Y"'Z

whence the leg-matrix Ly of the same procedure is readily determined, namely,
Ly=J7'T

Therefore, all we need now is an expression for the inverse of the leg Jacobian J ;.
This Jacobian is clearly full, which might discourage the reader from attempting
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its closed-form inversion. However, a closer look reveals that this Jacobian is
similar to that of decoupled manipulators, studied in Section 5.2, and hence, its
closed-form inversion should be reducible to that of a 3 x 3 matrix. Indeed, if
we recall the twist-transfer formula of egs.(5.17a & b), we can then write J; as

JJEUJKJ

where Uy is a unimodular 6 x 6 matrix and K is the Jacobian of the same
Jth leg, but now defined with its operation point located at the center of the
spherical joint. Thus,

_ 1 o - | K Kip
0= lon ey 1) =l &,

the superscript J indicating the Jth leg and with the definitions below:
O: the 3 x 3 zero matrix;
1: the 3 x 3 identity matrix;

O the cross-product matrix of 0y, the position vector of the center of the
spherical joint;

Caq: the cross product matrix of caq, the position vector of Cay.

Furthermore, the 3 x 3 blocks of K are defined, in turn, as

(Ki1)g =[e1 ex e3];
(Ki2)g=[es e egly
(K22)J = [e4 X (I‘4 —1‘1) €es X (1‘5 —1‘1) eg X (1‘5 - I’l)]J

Now, if the inverse of a block matrix is recalled, we have

Ky -Ki K12K22

-1 _
K; = O K22

J

where the superscript of the blocks has been transferred to the whole matrix, in
order to ease the notation. The problem of inverting K; has now been reduced
to that of inverting two of its 3 x 3 blocks. These can be inverted explicitly if
we recall the concept of reciprocal bases (Brand, 1965). Thus,

1 -(32 X eS)T
K= A7 | (es x e;)”

i | (er x )T ],

1 [lles x s5) x (e x s5)]”
(Kys)s = A7 | [es x s5) x (es x s4)]”

22 | [(ea x 54) % (e5 x s5)]” J
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with sj4, Sy, A{;, and AJ, defined as

Sj4a =ETJj4— T g1

SJs =Trj5 —Irn

Af} = det(K{)) = (e1 x ez - €3) s

Agz = det(Ksz) = [(e4 x 54) X (exss) - (€6 X 55)]s

I

Hl

the subscripted brackets and parentheses still reminding us that all vectors
involved pertain to the Jth leg. Moreover, since U is unimodular, its inverse
is simply

o1 1 o
Ur = [CM -0 1 ]
and hence,
31 = | it~ Kii KoKz (Cau = O) ~K;11K112K5;]
d K5 (Cm —Og1) K>, 7

the matrix sought, L, then being calculated as
L;=J;'Y"'Z

While we have a closed-form inverse of J 7, we do not have one for Y, which is
full and does not bear any particular structure that would allow us its inversion
explicitly. Therefore, matrix Ly should be calculated numerically.

12.5 Dynamics of Rolling Robots

The dynamics of rolling robots, similar to that of other robotic mechanical
systems, comprises two main problems, inverse and direct dynamics. We will
study both using the same mathematical model. Hence, the main task here is
to derive this model. It turns out that while rolling robots usually are nonholo-
nomic mechanical systems, their mathematical models are formally identical to
those of holonomic systems. The difference between holonomic and nonholo-
nomic systems lies in that, in the former, the number of independent actuators
equals the necessary and sufficient number of variables—independent general-
ized coordinates in Lagrangian mechanics—defining a posture (configuration)
of the system. In nonholonomic systems, however, the necessary and sufficient
number of variables defining a posture of the system exceeds the number of inde-
pendent actuators. As a consequence, in holonomic systems the dof equals the
number of independent actuators. In nonholonomic systems, the dof is usually
defined as the necessary and sufficient number of variables defining the system
posture, while the number of independent actuators is termed the system mobil-
ity, which thus turns out to be smaller than the system dof. Therefore, relations
between these dependent and independent variables will be needed and will be
derived in the course of our discussion. Moreover, we will study robots with
both conventional and omnidirectional wheels. Of the latter, we will focus on
robots with Mekanum wheels.
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Figure 12.6: A 2-dof rolling robot: (a) its general layout; and (b) a detail of its
actuated wheels

12.5.1 Robots with Conventional Wheels

We study here the robot of Fig. 10.17, under the assumption that it is driven
by motors collocated at the axes of its two coaxial wheels, indicated as M; and
M, in Fig. 10.17(b). For quick reference, we repeat this figure here as Fig. 12.6.

Our approach will be one of multibody dynamics; for this reason, we distin-
guish five rigid bodies composing the robotic mechanical system at hand. These
are the three wheels (two actuated and one caster wheels), the bracket carrying
the caster wheel, and the platform. We label these bodies with numbers from
1 to 5, in the foregoing order, while noticing that bodies 4 and 5, the bracket
and the platform, undergo planar motion, and hence, deserve special treatment.
The 6 x 6 mass matrices of the first three bodies are labeled M; to M3, with
a similar labeling for their corresponding 6-dimensional twists, the counterpart
items for bodies 4 and 5 being denoted by M), ML, t}, and tg, the primes
indicating 3 x 3—as opposed to 6 x 6 in the general case—mass matrices and
3-dimensional—as opposed to 6-dimensional in the general case—twist arrays.

We undertake the formulation of the mathematical model of the mechanical
system under study, which is of the general form of eq.(12.8a) derived for holo-
nomic systems. The nonholonomy of the system brings about special features
that will be highlighted in the derivations below.

As a first step in our formulation, we distinguish between actuated and un-
actuated joint variables, grouped into vectors @, and 6,, respectively, their
time-derivatives being the actuated and unactuated joint rates, 8, and 8,, re-
spectively. From the kinematic analysis of this system in Subsection 10.5.1, it
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is apparent that the foregoing vectors are all 2-dimensional, namely,

0, = [gﬂ , 0, = [91;] (12.35)

Further, we set to deriving expressions for the twists of the five moving
bodies in terms of the actuated joint rates, i.e., we write those twists as linear
transformations of 8,, i.e.,

t;=Ti0,, i=1273 (12.36a)

and ‘
t;=T.0,, i=4,5 (12.36b)

where, from eqs.(10.41a &b), (10.44a &b), and (10.48),

_ [~i+pdk —pdk
T=1n 0 ] (12.37)
_ [P0k —(i+ pdk)
T2=1" r ] (12.38)
Ts = 22] (12.39)
=% (12.40)
4 — _G4 .
! = - p5 _p(s = GT]
Ts=1roi+ /29 r(=xi+ (1/2)j)] = [055 (12.41)

with @3, G3, 84 and G4 yet to be derived. In the sequel, we will find convenient
to work with a few nondimensional parameters, @, §, p—already defined in
eq.(10.53)— and A, which is introduced now, and displayed below with the first
three parameters for quick reference:

r
p:a, A

[o]

]
I
il

~|

ath %, (12.42)

l’6

In the derivations below, we resort to the notation introduced in Subsec-
tion 10.5.1. First, we note that, from eqs.(10.45) and (10.52a & b), we can
write, with 6;; denoting the (4, j) entry of ©, as derived in Subsection 10.5.1,

w3 = (0119.1 + 91292)63 + [p<5(01 — 02) + 9210.1 + ggzég]k (12.43)

or

w3 = ®30a (1244)
with ©®3 defined as

O3 = [91163 + (921 -+ pJ)k f10e3 + (022 — pé)k]



12.5 Dynamics of Rolling Robots 487

In more compact form,
O3 = [611e3 + 01k  bi0e3 + 020k ] (12.45a)
with 651 and 859 defined, in turn, as
021 = 021 + pb, B30 = 03 — pb (12.45b)

Moreover, ) ) ]
('33 = —-1‘03f3 = —7‘(01101 + 01292)f3

and hence,
G3 =r [ —011f3 -—-012f3 ] (1246)

Further, it is apparent from Fig. 12.6 that the scalar angular velocity of the
bracket, wy, is given by

Wy =w+ 1/1
and hence,
wa = p8(fy — 63) + 02161 + 02905 = 02161 + G226,

Therefore, we can write )
ws =038, (12.472)

where 8, is defined as B B
64 =62 922]T (12.47Db)

Now, since we are given the inertial properties of the bracket in bracket coor-
dinates, it makes sense to express &4 in those coordinates, taking into account
that point C4 lies in the middle of the line PO3. Such an expression is obtained
below:

. . 1 . d .
€4 = 03 + Wy X 5[—df3 + (h - ’I‘)k] = —7‘03f3 + —2—(w + ’(/J)ea
Upon expressing 63 and ':,b in terms of §; and 92, we obtain
. 1 . 1~ .
¢y =d (562183 - p011f3> 61 +d (562283 — p912f3> G- (12.48)
whence it is apparent that
G4 = d[(1/2)§2183 - p911f3 (1/2)52263 - pelzfg] (12.49)
Therefore,

T/ 52 1 a-22

17 | d(1/2)821e3 — pbuifs]  d[(1/2)Bazes ~ phiofs] (12.50)

thereby completing all needed twist-shaping matrices.
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The 2 x 2 matrix of generalized inertia, 1(@), is now obtained. Here we have
written this matrix as a function of all variables, independent and dependent,
arrayed in the 4-dimensional vector @, because we cannot obtain an expression
for @, in terms of @,, given the nonholonomy of the system at hand. Therefore,
I is, in general, a function of 6;, 62, @3, and ¥. To be sure, from the above
expressions for the twist-shaping matrices T; and T}, it is apparent that the
said inertia matrix is an explicit function of % only, its dependence on §; and
0> being implicitly given via vectors ez and f;3. We derive the expression sought
for I starting from the kinetic energy, namely,

3 5
1 1
T = §1 St Miti + > > () Mt
4

or
3 5
1. . . .
T = 593 (Z T7 MiT,-> 6, + %ef (Z(T;)TM;T§> 0. (12.51)
1 4
and hence,
3 5
I=> TTMT; + Y (T)"M|T; (12.52)
1 4

In order to expand the foregoing expression, we let J,, and J. be the 3 x 3
inertia matrices of the two actuated wheels and the caster wheel, respectively,
the scalar moments of inertia of the bracket and the platform, which undergo
planar motion, being denoted by I, and I,. Likewise, we let my,, ms, m,, and
mp denote the masses of the corresponding bodies. Therefore,

M, = J(1)U mSlJ =M,
M; = ‘z)c m(c)ls_
M= [0
M= |8 ]

with O and 13 denoting the 3 x 3 zero and identity matrices, while 0 and 1, the
2-dimensional zero vector and the 2 x 2 identity matrix. Furthermore, under
the assumption that the actuated wheels are dynamically balanced, we have

I 0 0
Ju=|0 H 0
0 0 H

Moreover, we assume that the caster wheel can be modeled as a rigid disk of
uniform material of the given mass m. and radius r, and hence, in bracket-fixed
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coordinates { es, f3, k },
1
Je. = chr2 |:

It is now a simple matter to calculate

T _ [T+ (p8)*H + myr? —(pd)?H
TiMLTy = [ —(p6)?H (p8)°H

T _ | (08)’H ~(p8)’H
TaM.T = {_@5)2;; I+ (p8)2H +mor?

OO N
O = O

-0 O
|

where the symmetry between the two foregoing expressions is to be highlighted:
that is, the second expression is derived if the diagonal entries of the first ex-
pression are exchanged, which is physically plausible, because such an exchange
is equivalent to a relabeling of the two wheels. The calculation of the remaining
products is less straightforward but can be readily obtained. From the expres-
sions for T3 and M3, we have

J. o0 ][e
TIM;T; = [©F GT) [Oc mcls} [G‘;] =073.0; + m.GTG;

In order to calculate the foregoing products, we write J. and ®3 in component
form, i.e.,

1 2 00 6011 015 1 26011 261
J.Os=-ms2|0 1 0 0 0 |==ms2| 0 0

4 00 1 521 522 4 521 522
and hence,
-2 — -
07,0, = _l_mch 203, + 921-— 2011612 + %1922
4 2011012 + 021622 203, + 039
Likewise,
T . 92 0%1 011012
mgGs Ga = mer [911912 6,
Further,

(T)™™,T, = [0, Gf]|D 0" 184 = 1,040 +m;GTG
4 4 4 4 4 0 mb12 G4 bU4Uy4 b\ y \x4

Upon expansion, we have
-2 P
(TT™MyT, = 1, | O Gl
021 922 022

—2 - =
1m 2 [ 6,1 + 4p%0% 021822 + 40%011612
b

+ - _ _
4 091845 + 49011012 022 + 4p%03,
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Finally,

(THTMET, =65 GT) I 07 1165 = 1,650 +m,GIG
5 5145 5 5 0 myly Gs pYsYs pIXE NS

which can be readily expanded as

Nt o[1 -1 2 [(1/4)+ 22 (1/4) - X
(T5)" MG = I(49) [ 1 1]+mf”” [(1?4)—,\2 (1/4) + X2

We can thus express the generalized inertia matrix as

I=Iw+Ic+Ib+Ip

where I, I, Iy, and I, denote the contributions of the actuated wheels, the
caster wheel, the bracket, and the platform, respectively, i.e.,

2 [I + 2(p8)2H + myr? ~2(pd)2H

— TN T
I, =) T{MT; = —2(p8)2H T+ 2(p0)2 H + muyr?
1

_ mer? 603, + 05, 6611612 + 931522
’ 4 | 6611612 + 021022 667, + 05y

—2 P
021020 0,
1, 05, + 4p202, 021622 + 492011612
+ Zmbd i 2 72 202
021022 + 4p°011612 099 + 4p°67,

_ P I B | 2 [(1/4) + 22 (1/4) — A2
Ly = I(pd) {-1 1 }“’W [(1?4)42 (1?4)“2]

It is now apparent that the contributions of the actuated wheels and the platform
are constant, while those of the caster wheel and the bracket are configuration-
dependent. Therefore, only the latter contribute to the Coriolis and centrifugal
generalized forces. We thus have

TTMT = TTM,T; + (T,) T™M, T,
From the expression for TZ M3T3, we obtain
TIM; T3 = ©73,03 + msCICs
the time-derivatives being displayed below:
@3 = [9'116.3 + O11wafs + 021k . f12e3 + O1awafs + Oaok]
C3 =7 [—011fs + O11wses  —O1afs + O12w4e3]
with the time-derivatives of the entries of ® given as

O =4 —asiny + (cos)/2 asiny + (cosy)/2

pl—acosy — (siny)/2] placosy — (sine))/2] (12.53)
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its parameters being defined in eq (12 42). Upon expansion, the products ap-
pearing in the expression for T3 M3T3 become

071,06, =

mer? [2911911 + 921021 2911912 + 921922}
4 2012611 + 022021 2012012 + 022655

2 [0116011 011612
maCy Gy = mer [elzeu 012012]

Therefore,

) . .
TTM, T, = m;" [6911‘?11 + 821051 6611612 + _9_21Q22]

66012011 + 022021 6012612 + 022022
Likewise,
(TQ)TMQTQ = 1},9493 + mbC4T('34
the above time-derivatives being
. T R .
94 = [921 922]
Ci=d[ciies + ciafs  ca1e3 + coof3 ]

with coefficients ¢; ; given below:

1. 1— .
= 5921 +phnwy, c1p= 5921w4 — pbu

1. 1 5
Co1 = —0a2 + pbiows , €22 = ZO20wy — pbis

2 2
Hence,
nl 021921 921922 ]
I;84,0, =1 ; ;
et b [922921 622629
. 1 Ba1¢11 ~ 2pB11c12  Oa1cay — 2pB11600
CTe, = 2md? [_21 11 v
Mplog o = MG 1 G 611 — 2p012¢12  B20c21 — 2pB12¢02
Therefore,

. 021021 6210
TATM 21621 621022
(Ta)" My [922921 022022
+ i,
2

[chu —2pf11c12 Ba1¢01 — 2pf11022
f22c11 — 2pbiacia  B22co1 — 2p812¢22

In the final steps, we calculate TTWMT. As we saw earlier, only the caster
wheel and the bracket can contribute to this term, for the contributions of
the other bodies to the matrix of generalized inertia are constant. However, the
bracket undergoes planar motion, and according to Exercise 7.8, its contribution
to this term vanishes. Therefore,

TTWMT = T; W3M3T;3
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Upon expansion of the foregoing product, we have

Q o], O C
TIW3;M;3T; = [OF G’é"l[o3 o} [0 mc13HGz]

= 070,103 (12.54)

The foregoing term vanishes, as we prove below. First, notice that

Q3Ld3 =0
However, from eq.(12.44), )
w3 = O30,
and hence, )
3030, =0
for every 6,, whence
2303 = O3

with O3z denoting the 3 x 2 zero matrix. Upon transposing the foregoing ex-
pression, we obtain
O71; = 0y

where we have recalled that Q3 is skew-symmetric.

Substitution of the above expression into eq.(12.54) readily shows that the
term in question indeed vanishes, i.e.,

In summary, the Coriolis and centrifugal force terms of the system at hand
take the form

00,0 = o [0 + ) + T + G

4 )6612(01161 + 01262) + 622(01201 + 02202)

. .. i) 1 . .. [a
+Ib(92101 + 02292) [ez;] + §m(,d2(01191 +02102) [gz;jl

) . To
—myd®p(c1261 + c2062) [011]
12

If we recall that the ¢;; coefficients are linear in the joint rates, then the foregoing
expression clearly shows the quadratic nature of the Coriolis and centrifugal
terms with respect to the joint rates.

The derivation of the forces supplied by the actuators is straightforward:

=[]

The dissipative generalized force is less straightforward, but its calculation is
not too lengthy. In fact, if we assume linear dashpots at all joints, then the
dissipation function is

1 1 . 1 . 1 . 1.7 . 1.7
A= 5610% + 50293 + 50393 + §C4¢2 = -2-9a Ci20, + 50

U

C346,,
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with Cy5 and Cz4 defined as
_|le O _Jes O
Ciz = [0 cz]’ Caa = [O 04]
Now, if we recall the expression for 8, in terms of 6., we end up with
1.7 .
A= §0a Dg,
D being defined, in turn, as the equivalent damping matrix, given by

D=Ci;, +07C;,0

Since ® = ©(y), D = D(3), the dynamics model under study thus taking the
form
1(6)8, + C(0,0,)0, = T — D)0,

with T and C(8, Qa) given, such as in the case of holonomic systems, as

1(6) = TTMT
C(0,0,) = TTMT + TTWMT

thereby completing the mathematical model governing the motion of the system
at hand. Note here that 6 denotes the 4-dimensional vector of joint variables
containing all four angles appearing as components of 8, and 8,. Because of
the nonholonomy of the system, an expression for the latter in terms of the
former cannot be derived, and thus the whole 4-dimensional vector 8 is left as
an argument of both T and C.

Note that calculating the torque T required for a given motion—inverse
dynamics—of the rolling robot under study is straightforward from the above
model. However, given the strong coupling among all variables involved, a
recursive algorithm in this case is not apparent. On the other hand, the deter-
mination of the motion produced by a given history of joint torques requires
() the calculation of I, which can be achieved symbolically; (i) the inversion
of I, which can be done symbolically because this is a 2 x 2 matrix; (444) the
calculation of the Coriolis and centrifugal terms, as well as the dissipative forces;
and (iv) the integration of the initial-value problem resulting once initial values
to 0 and 6, have been assigned.

12.5.2 Robots with Omnidirectional Wheels

We now consider a 3-dof robot with three actuated wheels of the Mekanum type,
as shown in Figs. 1.13(a) and 10.19, with the configuration of Fig. 12.7, which
will be termed, henceforth, the A-array. This system is illustrated in Fig. 12.8.

Below we will adopt the notation of Subsection 10.5.2, with o = 7/2 and
n = 3. We now recall that the twist of the platform was represented in planar
form as

C

t = [“’} (12.55)
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where w is the scalar angular velocity of the platform and ¢ is the 2-dimensional
position vector of its mass center, which will be assumed to coincide with the
centroid of the set of points { C; }3. Moreover, the three wheels are actuated,
and hence, the 3-dimensional vector of actuated joint rates is defined as

0,= |6, (12.56)

The relation between 0, and t’ was derived in general in Subsection 10.5.2. As
pertaining to the robot of Fig. 12.7, we have
Jo, = Kt' (12.57a)

with the two 3 x 3 Jacobians J and K defined as

r £
J=—al, K=|r I (12.57b)
r fF

where, it is recalled, a is the height of the axis of the wheel hub and r is the
horizontal distance of the points of contact with the ground to the mass center
C of the platform, as indicated in Fig. 12.7(a). Moreover, vectors {e; }3 and
{£:}3, defined in Subsection 10.5.2, are displayed in Fig. 12.7. Below we derive
expressions for w and ¢, from eq.(12.57a), in terms of the joint rates. To this
end, we expand these three equations, thus obtaining

rw 4+ flé = —ab; (12.58a)
rw+f1é = —ab, (12.58b)
rw+ e = —abs (12.58c¢)

Upon adding corresponding sides of the three foregoing equations, we obtain

3 3
3rw + &7 Z f,=—a Z 0; (12.59)
1 1
But from Fig. 12.7(b), it is apparent that
e +ey+e3=0 (1260&)
fi+fh+£f5=0 (1260b)
Likewise,
3 3 3
e = %(f3 — f2), ey = \/?'—(fl — f3)’ e3 = —\—/3—_(1‘2 — fl) (1260(3)
3 3 3
f; = %(ez —e3), fr = %(es —e), f3 = %(el —e) (12.60d)
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€3

(2) (b)
Figure 12.7: Rolling robot with ODWs in a A-array

and hence, the above equation for w and ¢ leads to

a .
W= _5291. (12.61)

Now we derive an expression for ¢ in terms of the actuated joint rates. We do
this by subtracting, sidewise, eq.(12.58b) from eq.(12.58a) and eq.(12.58¢) from
eq.(12.58b), thus obtaining a system of two linear equations in two unknowns,
the two components of the 2-dimensional vector ¢, namely,

A¢=b
with matrix A and vector b defined as

a=[Goph]=-va[a] v=-a[fi]

where we have used relations (12.60¢). Since A is a 2 x 2 matrix, its inverse can
be readily found with the aid of Facts 5.7.3 and 5.7.4, which yield

s b — b,
¢ = ga[—Eel Ee;] [92_93]

Now, from Fig. 12.7(b),
Ee1 = f1, Ee3 = f3
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Figure 12.8: A view of the three-wheeled robot with Mekanum wheels in a
A-array

and hence, ¢ reduces to
s 2 s ; ; ; 2 . ; ;
¢ = Ea[(f)g —01)f; + (62 — 05)3] = ga[ﬂg(fl + f3) — 61f) — 0313)
But by virtue of eq.(12.60b),
£y +f3 = —f

the above expression for ¢ thus becoming
Dy
e=—2 "0 (12.62)
1

Thus, w is proportional to the mean value of {6; }3, while ¢ is proportional to
the mean value of {6;f; }3. In deriving the mathematical model of the robot
at hand, we will resort to the natural orthogonal complement, and therefore,
we will require expressions for the twists of all bodies involved in terms of the
actuated wheel rates. We start by labeling the wheels as bodies 1, 2, and 3,
with the platform being body 4. Moreover, we will neglect the inertia of the
rollers, and so no labels need be attached to these. Furthermore, the wheel
hubs undergo rotations with angular velocities in two orthogonal directions,
and hence, a full 6-dimensional twist representation of these will be required.
Henceforth, we will regard the angular velocity of the platform and the velocity
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of its mass center as 3-dimensional vectors. Therefore,

k k k

ty = T40a, T4 = - 2Tf1 27‘f2 27'f3 (12.63)
with A defined, in turn, as the ratio
a
=9 12.
A 3 (12.64)
Now, the wheel angular velocities are given simply as
. . 3 .
w; =0;e; +wk =6;e; — X (Z 91> k (12.65)
1
or
Wy = (e1 - Ak)gl - )\ng — /\931( (12.66&)
wa = =M1k + (e — Ak)fy — Msk (12.66b)
w3 = —A1k — M,k + (e5 — Ak)bs (12.66¢)

Similar expressions are derived for vectors ¢;. To this end, we resort to the
geometry of Fig. 12.7, from which we derive the relations

3 3
& = ¢+ wrfy = =2\r (Z 0‘,-f,~> —Mr (Z éj> f;
1 1

and hence,
¢ = —)\T[(3él + 92 + ég)fl + 2(92f2 + é3f3)] (12.67a)
& = =201 61 + (61 + 36 + 03)fs + 26315] (12.67b)
&3 = —Ar[2(01f1 + 6265) + (61 + 05 + 303)83] (12.67c)

From the foregoing relations, and those for the angular velocities of the wheels,
egs.(12.66a—), we can now write the twists of the wheels in the form

t; =T;0,, i=1,2,3 (12.68)
where
T, = [e1 =k -k Xk ]
VE | =3xefy (£ +2f)  —Ar(fr 4 265) |
T ey — Ak Y
2T (B 26)  =30f —Ar(fy +2f5) |
.= | Ak -k e3 — Ak |
ST | (s +261)  —Mr(fs +2f)  —3)rf; |
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On the other hand, similar to what we have in eq.(12.62), an interesting rela-
tionship among angular velocities of the wheels arises here. Indeed, upon adding
the corresponding sides of the three equations (12.66a—c), we obtain

3 3 3
Zwi = Zéiei—&\kZéi
1 1 1

Further, we dot-multiply the two sides of the foregoing equation by k, which
yields, upon rearrangement of terms,

3

3
A b=k w;
1

1

and by virtue of eq.(12.61),

QO et

w=k-0, w

iwi (12.69)

that is, the vertical component of the mean wheel angular velocity equals the
scalar angular velocity of the platform.

Now we proceed to establish the mathematical model governing the dynamics
of the system under study. The generalized inertia matrix is then calculated as

4
1= T/M;T; (12.70)
1

where, if I,, and m,, denote the moment-of-inertia matrix, in body-fixed coor-
dinates, and the mass of each of the three wheels, with similar definitions for I,
and m, as pertaining to the platform,

I, O

— - _ | O
M; = [0 mwl]’ i=1,2,3, My= [O mpl] (12.71)
We will also need the angular-velocity dyads, W, which are calculated as
0 0 .
W, = [0 0], i=1,2,3 (12.72)

where W4 will not be needed, since the platform undergoes planar motion. We
have

I (e; — Ak) ~ ALk — Mk

M. Ty = [ =3mypArfy  —myAr(fy +2f) —myr(fi + 2f3)

Moreover, we assume that in a local coordinate frame { ey, f;, k },

I 0 O
I,=10 J 0
00 J
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in which I and J are constants. Hence,
I+ XK XJ A\J
TIM T = | XNJ ML XM
A2J XM ML

where
K =J+9m,r?
L=J+3myr?
M=J-3myr?
Likewise,
[ A2L \2J XM
TIMLT, = | 20 T+ XK \2J
| N2 M NJ ML
(A2L A%2J N2 J
TIM;T3; = | A2J XL X\2J
| A2T AT T+ MK
Furthermore,

My = [ Lk Lk Lk ]

2mprfy  2myrfa 2myrfs
It is apparent that, by virtue of the planar motion undergone by the platform,

only its moment of inertia H about the vertical passing through its mass center
is needed. Then,

H +4mpr® H —2mpr? H — 2mpr?®
TIMyTy =N | H~2myr? H+4mpr? H —2myr?
H ~2mpr* H—2myr? H+4dmpr?

Upon summing all four products computed above, we obtain

a g B
I=|8 a 8
B B «a

with the definitions below:

a =T+ N(H+3J + 15myr? + dmyr?)
B =X (H +3J — 3myr® — 2myr?)

which is a constant matrix. Moreover, note that the geometric and inertial
symmetry assumed at the outset is apparent in the form of the foregoing inertia
matrix, its inverse being readily obtained in closed form, namely,

atf -5 =B
-8 a+B -8B |, A=s(a+pfa-26
-8 -8 a+p

1! =

D=
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Next, we turn to the calculation of the TTMT term. This is readily found to
be

4
T'MT = ) T/ M, T;
1

each of the foregoing products being expanded below. We have, first,

T _ U.)fl 0 0
1= | 3Arwe;  —Arw(ez —e3) Mrw(es —es) |
T, = 0 wfy 0 ]
7 [ Mrw(er —e3) 3hwes —Mrw(er —es) |
,i, _ [ 0 0 (J.)f3 |
5~ | —Arw(es —e1) Arw(ez —e;) 3Arwes |
. 0 0 0
Ta=2 [2rwe1 2rwes 2rwes

Hence, for the first wheel,

M T _ Iw(Ufl 0 0
LHL 7 3 my, rwey —dmyrw(es —ex) Amyrw(es —es)
Therefore,
) 0 -1 1
TITM T, =3V3X2myr?w | 1 0 0
-1 0 0

where the skew-symmetric matrix is the cross product matrix of vector [0,1,1
By symmetry, the other two products, TTM;T;, for i = 1,2, take on similar
forms, with the skew-symmetric matrix, becoming, correspondingly, the cross-
product matrix of vectors [1, 0, 1]7 and [1, 1, 0]%. This means that the first
of these three products is affected by the rotation of the second and the third
wheels, but not by that of the first one; the second of those products is affected
by the rotation of the first and the third wheels, but not by the second; the
third product is affected, in turn, by the rotation of the first two wheels, but
not by that of the third wheel. We thus have

I

0 -1 0

TIM, Ty = 3V3Xmyr?w [1 0 —1
0 1 0|
) [0 0 1]

TIM;Ts = 3v3X2m,r2w | 0 0 —1
-1 1 o0
Furthermore,
. 0 0 0
M.Tq = A —2mprwe; —2mprwe; —2mprwes
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and hence,
. 0 -1 1
TIMTs =2vV3°myr2w | 1 0 -1 (12.74a)
-1 1 0

whose skew-symmetric matrix is readily identified as the cross-product matrix
of vector [1, 1, 1]7, thereby indicating an equal participation of all three wheels
in this term, a rather plausible result. Upon adding all four products calculated
above, we obtain

0 -1 1
TTMT = 2v3X2(3my + mp)r’w | 1 0 -1 (12.75)
-1 1 0

The equal participation of all three wheels in the foregoing product is apparent.
Moreover, notice that the term in parentheses can be regarded as an equivalent
mass, which is merely the sum of all four masses involved, the moments of inertia
of the wheels playing no role in this term.

We now turn to the calculation of the TTWMT term, which can be ex-
pressed as a sum, namely,

3
TTWMT = ) T] W,M;T;
1

where we have not considered the contribution of the platform, because this
undergoes planar motion. Moreover, matrices W3, for 4 = 1, 2, and 3, take the
obvious forms

W, = [n,- o]

(O I
We then have, for the first wheel,

wi X [Iw(el - Ak)] —~Wwi X (Alwk) —Wi X ()\Iwk)

Now, it does not require too much effort to calculate the complete first product,
which merely vanishes, i.e.,

T’{Wl M1 Tl = 033

with O33 defined as the 3 x 3 zero matrix. By symmetry, the remaining two
products also vanish, and hence, the sum also does, i.e.,

TTWMT = O3; (12.76)

Now, calculating the dissipative and active generalized forces is straightforward.
We will neglect here the dissipation of energy occurring at the bearings of the
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rollers, and hence, if we assume that the lubricant of the wheel hubs produces
linear dissipative torques, then we have

9:1 1
d=c|b|, T=|m (12.77)
03 T3

where ¢ is the common damping coefficient for all three wheel hubs. We now
have all the elements needed to set up the mathematical model governing the
dynamics of the robot, namely,

10, + Cw)d, =7—6 (12.78)

where C(w) = TTMT + TTWMT; from eqgs.(12.75) and (12.76), this term
becomes

0 -1 1
Cw) =2V332@Bmy +mpyr?w | 1 0 -1 (12.79)
-1 1 0
Since w = —a/(3r)(f1 + 6, + 63), the quadratic nature of the second term

of eq.(12.78) in the joint rates becomes apparent. It is also apparent that
the mathematical model derived above does not depend on 6,. What this
means is that the mathematical model allows the integration of the actuated
joint accelerations to yield joint-rate histories 8, (¢), but this model cannot pro-
vide joint-variable histories 8,(t). To obtain these, for given initial conditions,
the joint-rate histories have to be integrated, which can be done by numerical
quadrature.

Finally, in order to obtain the Cartesian histories of the platform pose, given
by the angle ¢ that a specific line of the platform makes with a line fixed in
an inertial frame, and the position vector of the mass center, ¢, eqs.(12.61)
and (12.62) have to be integrated. While the integration of the former can be
readily done by quadrature, that of the latter requires knowledge of vectors f;,
for i = 1, 2,3, and these vectors depend on ¢. Thus, the integration of eq.(12.61)
can be done once the joint-rate histories are known; that of eq.(12.62) requires
knowledge of angle o. These features are inherent to nonholonomic systems.

12.6 Exercises

12.1 Show that the mathematical model of an arbitrary robotic mechanical
system, whether holonomic or nonholonomic, with r rigid bodies and n
degrees of freedom, can be cast in the general form

1(0)0, + C(0,0,)0, =14 +~v+ 6
where

6: the m-dimensional vector of variables associated with all joints, ac-
tuated and unactuated;
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#,: the n-dimensional vector of actuated joint variables, n < m;
74: the n-dimensional vector of actuator torques;

~: the n-dimensional vector of gravity torques;

d: the n-dimensional vector of dissipative torques;

I(6): the n x n matrix of generalized inertia;

,Qa): the n x n matrix of Coriolis and centrifugal forces;
with I(8) and C(0,8,) given by
1(0) = TTMT
C(0,0,) = %[i +TTMT — TTMT + TT(WM + MW)T]

in which

M: the 6r x 6r matrix of system mass;

T: the n x 6r twist-shaping matrix that maps the n-dimensional vector
of actuated joint rates into the 6r-dimensional vector of system twist
t.

b

‘W: the 6r x 6r matrix of system angular velocity.

For the system of Exercise 12.1, show that the matrix difference 1(6,6.) -
2C(0,80,) is skew-symmetric. This is a well-known result for serial ma-
nipulators (Spong and Vidyasagar, 1989).

For the rolling robot with conventional wheels of Subsection 12.5.1, find
the generalized inertia matrix of the robot under the maneuvers described
below:

(a) pure translation;

(b) midpoint of segment 010, stationary.
In each case, give a physical interpretation of the matrix thus obtained.

With reference to the same robot of Exercise 12.3, state the conditions on
its geometric parameters that yield I, and I, isotropic, these two 2 x 2
matrices having been defined in Subsection 12.5.1.

Derive the mathematical model governing the motion of a 2-dof rolling
robot with conventional wheels, similar to that of Fig. 10.17, but with two
caster wheels instead. The vertical axes of the caster wheels are a distance
! apart and a distance a + b from the common axis of the driving wheels.
What is the characteristic length of this robot?

Find the conditions under which the three-wheeled robot with omnidirec-
tional wheels analyzed in Subsection 12.5.2 has an isotropic inertia matrix.
Discuss the advantages of such an inertially isotropic robot.
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With reference to the omnidirectional robot of Subsection 12.5.2;, show
that the mathematical model can be manipulated to yield a single first-
order ordinary differential equation in w, of the form

w+kw = f(t)

in which & is a constant with units of frequency, its inverse being the time-
constant of the system. Find expressions for & and f(¢). Then, integrate
the above equation in closed form, to obtain the time-history of w for a
given time-history f(¢) and given initial condition w(0).

Establish the conditions on the actuated joint rates under which the three-
wheeled robot with omnidirectional wheels of Subsection 12.5.2 undergoes
pure translation. Under these conditions, the robot has only two degrees
of freedom and, hence, a 2 x 2 inertia matrix. Derive an expression for its
inertia matrix. Hint: The constraint for pure translation can be written
as )

a’f,=0

and hence, if the 3 x 2 matriz L is an orthogonal complement of a, i.e., if
a’L = 07, where 04 is the 2-dimensional zero vector, then the underlying
Euler-Lagrange equations of the constrained system can be derived by mul-
tiplying the two sides of the mathematical model found in Subsection 12.5.2
by LT :

L7168, +L7CO, = LT+ - L7

Further, upon writing 8, as a linear transformation of o 2-dimensional
vector u, namely, as

6, =Lu
we obtain
LTILu+LTCLu=LTr - LT§

and hence, the generalized inertia matriz under pure translation is LTIL.

Find the maneuver(s) under which the Coriolis and centrifugal forces of
the robot analyzed in Subsection 12.5.2 vanish. Note that in general,
these forces do not vanish, even though the generalized inertia matrix of
the robot is constant.

12.10 Find the eigenvalues and eigenvectors of the matrix of generalized in-

ertia of the 3-dof rolling robot with omnidirectional wheels analyzed in
Subsection 12.5.2.

12.11 The Euler-Lagrange equations derived for holonomic mechanical systems

in Section 12.3, termed the Euler-Lagrange equations of the second kind,
require that the generalized coordinates describing the system be inde-
pendent. In nonholonomic mechanical systems, a set of kinematic con-
straints is not integrable, which prevents us from solving for dependent
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from independent generalized coordinates, the application of the Euler-
Lagrange equations as described in that section thus not being possible.
However, dependent generalized coordinates can be used if the Fuler-
Lagrange equations of the first kind are recalled. To this end, we let g
be the m-dimensional vector of generalized coordinates that are subject
to p differential constraints of the form

A(q)q = b(q,t)

where A is a p x m matriz of constraints and b is a p-dimensional vector
depending on the configuration q and, possibly, on time explicitly. When
b does not contain ¢ explicitly, the constraints are termed scleronomic;
otherwise, rheonomic. Furthermore, let n = m — p be the mobility of the
system. The Euler-Lagrange equations of the first kind of the system at

hand take on the form
d (8L\ 8L r
d (5&) T8q PTAA

where A is a p-dimensional vector of Lagrange multipliers that are chosen
so as to satisfy the kinematic constraints. Thus, we regard the m depen-
dent generalized coordinates grouped in vector q as independent, their
constraints giving rise to the constraint forces AT \.

Use the Euler-Lagrange equations of the first kind to set up the mathe-
matical model of the rolling robot with omnidirectional wheels studied in
Subsection 12.5.2.



A

Kinematics of Rotations: A
Summary

The purpose of this appendix is to outline proofs of some results in the realm
of kinematics of rotations that were invoked in the preceding chapters. Further
details are available in the literature (Angeles, 1988).

We start by noticing two preliminary facts whose proof is straightforward,
as the reader is invited to verify.

Lemma A.1 The (d/dt)(-) and the vect(-) operators, for 3x3 matriz operands,
commute.

and

Lemma A.2 The (d/dt)(-) and the tr(-) operators, for nxn matriz operands,
commute.

Furthermore, we have

Theorem A.1 Let A and S both be 3 x 3 matrices, the former arbitrary, the
latter skew-symmetric. Then,

1
vect(SA) = -2—[tr(A)1 —Als
where s = vect(S).
Proof: An invariant proof of this theorem appears elusive, but a componentwise
proof is straightforward. Indeed, let a;; denote the (¢, j) entry of A, and s; the
ith component of s. Then,
—@2183 + 43182 —a2283 T a3282 —a2383 + 3352

SA = 1183 — (3151 a1283 — Q3281 1383 — 3381
—@1182 + Q2181 —a1252 + Q2281 —a1382 + Q2351
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Hence,
1 (@22 + a3sz)s1 — 1282 — 61383
vect( SA) = = | (a11 + as3)s2 — @2151 — A2383
(@11 + a22)83 — az181 — as252

On the other hand,

ago + ass —a12 —a13
tI‘( A )1 —A= —ao1 aiy + ass —as3
—az —as2 aii + a2

and hence,

1 1 | (@22 + @33)81 — G1282 — Q1383
-2-[tr< A)l — A]S = *2‘ (all + (133)82 — a9181 — A2383
(@11 + a22)83 — a3181 — G322

thereby completing the proof. Moreover, we have
Theorem A.2 Let A, S, and s be defined as in Theorem A.1. Then,
tr(SA) = —2s- [vect( A)]

Proof: From the above expression for SA,

tr(SA) = —a2183 + az182 + a1283 — A3281 — 1382 + @23 81
= (ags — az2)s1 + (a1 — a13)82 + (@12 — a21)s3

ag3 — asz
=[s1 82 s3] |:a31 - 013:| = —2s - [vect( A )] (A1)

a1z — a21

q.e.d.
Now we turn to the proof of the relations between the time-derivatives of
the rotation invariants and the angular-velocity vector. Thus,

Theorem A.3 Letv denote the 4-dimensional array of natural rotation invari-
ants, as introduced in Section 2.3.2 and reproduced below for quick reference:

[

Then the relationship between © and the angular velocity w is given by
v = Nw
with N defined as

N = [sin¢/(2(1 — cos ¢))](1 — eeT) — (1/2)E
= oT
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Proof: Let us obtain first an expression for é. This is readily done by recalling
that e is the real eigenvector of Q, i.e.,

Qe=e

Upon differentiation of both sides of the foregoing equation with respect to time,
we have

Qe+Qe=¢
ie.,
(1-Q)é=Qe
An expression for Q can be derived from eq.(3.44), which yields
Q=0Q (A.2)
Therefore,

Qe =Re=wxe
and hence, the above equation for & takes the form
1-Qé=wxe

from which it is not possible to solve for & because matrix (1 — Q) is singular.
Indeed, since both matrices inside the parentheses have an eigenvalue +1, their
difference has an eigenvalue 0, which renders this difference singular. Thus, one
more relation is needed in order to be able to determine &. This relation follows
from the condition that ||e]|2 = 1. Upon differentiation of both sides of this
condition with respect to time, we obtain

eté=0

the last two equations thus yielding a system of four scalar equations to deter-
mine é. We now assemble these equations into a single one, namely,

Aé=bD
where A is a 4 X 3 matrix, while b is a 4-dimensional vector, defined as
_11-Q _lwxe
A=[ o } b:[ ; ]

The foregoing overdetermined system of four equations in three unknowns now
leads to a system of three equations in three unknowns if we multiply its two
sides by AT from the right, thereby producing

ATAe=ATb
We can therefore solve for & from the above equation in the form

é=(ATA) *ATb
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where AT A takes the form
ATA = (2)1 —(Q+ QT) + ee”

But the sum inside the parentheses is readily identified as twice the symmetric
component of Q, if we recall the Cartesian decomposition of matrices introduced
in eq.(2.56). Therefore,

Q+ QT = 2[(cos¢)1 + (1 — cos p)ee”]

Hence,
ATA =2(1 ~cos )1 — (1 — 2cos p)ee”
As the reader can readily verify, the inverse of this matrix is given by

TaN—1 _ 1 1—2cos¢
(ATA)™ = 2(1~cosd>)1+ 2(1—cos<;$)ee

which fails to exist only in the trivial case in which Q becomes the identity
matrix. Upon expansion of the last expression for &, we have
1

Now QTE is obtained by recalling eq.(2.54), thereby obtaining
QTE = (cos ¢)E + (sin ) (1 — ee”)
the final expression for & thus being

1

—m[(l — CO8s ¢)E — (sin ¢)(1 et eeT)]w

é =

Now, an expression for ¢ is obtained upon equating the trace of the two
sides of eq.(A.2), which yields

tr(Q) = tr(2Q) (A.3)
From Lemma A.2,
tr(Q) = %tr(Q) (A.4)

and hence,

tr(Q) = —2¢sin ¢
On the other hand, from Theorem A.2,
tr(2Q) = —~2w - (sinP)e
Therefore, )
p=w-e

Upon assembling the expressions for é and ¢, we obtain the desired relation,
with N given as displayed above, thereby proving the theorem.
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Theorem A.4 Let A denote the 4-dimensional array of linear rotation invari-
ants, as introduced in Section 2.3.3 and reproduced below for quick reference:

A= [“’2] = [[trf D 1)1/2]

Then the relationship between A and the angular velocity is given by
A=Lw
with L defined as
L

[(1/ 22[;;(3))2; Q]]

Proof: From Lemma A.1, we have

l%vect( Q) =vect(Q) (A.5)

On the other hand, equating the vectors of the two sides of eq.(A.2) yields
vect( Q) = vect( QQ)

and hence,

%vect( Q) = vect(Q2Q)

But, if we recall Theorem A.1, the foregoing relation leads to

9 veet(Q) = 3[tr(Q)1 - Q

Likewise, from Lemma A.2, we have

d
S6(Q) =u(Q)

and hence,
4w(Q) = (2Q)
Now, if we recall Theorem A.2, the foregoing relation leads to
%tr( Q) = —2w - [vect( Q)] = —2(sin ¢p)e’ w
Hence,

%(cos $) = —(sin p)e” w

Upon assembling the last two expressions for the time-derivatives of the vector
of Q and cos ¢, we obtain the desired relation.
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Theorem A.5 Let 13 denote the f-dimensional array of the Fuler-Rodrigues
parameters of a rotation, as introduced in Section 2.3.6 and reproduced below

for quick reference: '
=[] =[]

Then, the relationship between 1) and the angular velocity takes the form
1= Hw
with H defined as

e [ 11

where R is the cross-product matriz of r.

Proof: If we differentiate r, we obtain

I = ésin <%) + eg cos (%)

and hence, all we need to derive the desired relations is to find expressions for
é and ¢ in terms of the Euler-Rodrigues parameters. Note that from Theo-
rem A.3, we already have those expressions in terms of the natural invariants.
Thus, substitution of the time-derivatives of the natural invariants, as given in
Theorem A.3, into the above expression for 1 leads to

o 1 (? Lin (8 _sing
r—-—zsln(2)Ew+2sm<2)1_COS¢

wfos(®)-m(H) 2] e

Now, by recalling the identities giving the trigonometric functions of ¢ in terms
of those of ¢/2, we obtain

L sing ¢
Sin <§> m = COS8 (—2—)

and hence, the term in brackets of the above expression vanishes, the expression
for r thus reducing to

I = % [cos (g) 1 —sin (g) E] w = %(rol -R)w

thereby completing the proof.
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Numerical Equation-Solving

The numerical solution of the most common types of systems of linear and
nonlinear equations is outlined in this Appendix.
We start with the solution of the linear algebraic system

Ax=b (B.1)

with A defined as a full-rank m x n matrix, while x and b are n- and m-
dimensional vectors, respectively. The case m = n is the most frequently
encountered; this case was discussed in Section 5.2 and need not be further
discussed. We will consider only two cases:

(a) overdetermined: m > n; and

(b) underdetermined: m < n.

The overdetermined case does not admit a solution, unless vector b happens
to lie in the range of A. Besides this special case, then, we must reformulate the
problem; rather than seeking a solution of eq.(B.1), we will look for an approz-
imation of that system of equations. Moreover, we will seek an approximation
that will satisfy an optimality condition.

The underdetermined case, on the contrary, admits infinitely many solutions,
the objective then being to seek one that satisfies (a) the system of equations
and (b) an additional optimality condition as well.

A nonlinear system of equations takes the form

f(x) = 0y,
where f and x are m- and n-dimensional vectors, respectively, while 0,, is the
m-dimensional zero vector. We consider the cases:
(a) determined: m = n; and
(b) overdetermined: m > n.

The underdetermined case m < n, not occuring in the book, and requiring
specialized knowledge of mathematical programming, is left out.
We study each of the two cases above in the sections below.
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B.1 The Overdetermined Linear Case

The error e in the approximation of eq.(B.1) is defined as
e=b— Ax (B.2)

An obvious way of imposing an optimality condition on the solution x is to
specify that this solution minimize a norm of e. All norms of e can be expressed

as Lo 1/p
lelly = (5 > |ek|P> (5.3

with e being understood as the kth component of the m-dimensional vector
e. When p = 2, the foregoing norm is known as the FEuclidean norm, which
we have used most frequently in this book. When p — oo, the infinity norm,
also known as the Chebyshev norm, is obtained. It turns out that upon seeking
the value of x that minimizes a norm of e, the simplest is the Euclidean norm,
for the minimization of its square leads to a linear system of equations whose
solution can be obtained directly, as opposed to iteratively. Indeed, let us set
up the minimization problem below:

z(x)':‘%”e”% > min (B.4)

The normality condition of the minimization problem at hand is derived upon
setting the gradient of z with respect to x equal to zero, i.e.,

dz
o 0 (B.5)

Now, the chain rule and the results of Subsection 2.3.1 allow us to write

dz _ (de sz_ T

and hence, we have the first result:

Theorem B.1.1 The error in the approzimation of eq.(B.1), for the full-rank
m X n matriz A, with m > n, is of minimum FEuclidean norm if it lies in the
nullspace of AT :

ATe=0, (B.7)

Furthermore, if eq.(B.2) is substituted into eq.(B.6), and the product thus
resulting is substituted, in turn, into the normality condition, we obtain

ATAx = ATb (B.8)

which is known as the normal equation of the minimization problem at hand. By
virtue of the assumption on the rank of A, the product AT A is positive-definite
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and hence, invertible. As a consequence, the value x¢ of x that minimizes the
Fuclidean norm of the approximation error of the given system is

xo = (ATA)"'ATDH (B.9)

the matrix coefficient of b being known as a generalized inverse of A. The error
obtained with this value is known as the least-square error of the approximation,
ie.,

€y = b — AX() (BIO)

The reader should be able to prove one more result:

Theorem B.1.2 (Projection Theorem) The least-square error eq is orthog-
onal to Axg.

While the formula yielding the foregoing generalized inverse is quite simple to
implement, the number of floating-point operations (flops) it takes to evaluate,
along with the ever-present roundoff errors in both the data and the results,
renders it not only inefficient, but also unreliable if applied as such. Indeed,
if we recall the concept of condition number, introduced in Section 5.8 and
recalled in Subsection 9.4.1, along with the definition adopted in the latter
for the condition number, it becomes apparent that the condition number of
ATA is ezactly the square of the condition number of A. This result can be
best understood if we apply the Polar-Decomposition Theorem, introduced in
Section 5.8, to rectangular matrices, but we will not elaborate on this issue here.

As a consequence, then, even if A is only slightly ill-conditioned, the product
ATA can be catastrophically ill-conditioned. Below we outline two procedures
to calculate efficiently the least-square approximation of the overdetermined
system (B.1) that preserve the condition number of A and do this with a low
number of flops (floating-point operations).

B.1.1 The Numerical Solution of an Overdetermined
System of Linear Equations

In seeking a numerical solution of the system of equations at hand, we would
like to end up with a triangular system, similar to the LU-decomposition ap-
plied to solve a system of as many equations as unknowns, and hence, we have
to perform some transformations either on the rows of A or on its columns.
A safe numerical procedure should thus preserve (a) the Euclidean norm of
the columns of A and (b) the inner product between any two columns of this
matrix. Hence, a triangularization procedure like LU-decomposition would not
work, because this does not preserve inner products. Obviously, the transforma-
tions that do preserve these inner products are orthogonal, either rotations or
reflections. Of these, the most best-known methods are (a) the Gram-Schmidt
orthogonalization procedure and (b) Householder reflections.

The Gram-Schmidt procedure consists in regarding the columns of A as a set
of n m-dimensional vectors { a; }7. From this set, a new set { e; }7 is obtained
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that is orthonormal. The procedure is quite simple and works as follows: Define

e; as
aj

llas |
Further, we define e, as the normal component of a; onto ez, as introduced in
eq.(2.6b), i.e.,

e} = (Bll)

ay =(1-ejeay (B.12a)
al
aj
9= —— (B.12b)
llaz

In the next step, we define e; as the unit vector normal to the plane defined
by e; and e; and in the direction in which the inner product ef a3 is positive,
which is possible because all vectors of the set { a; }7* have been assumed to be
linearly independent—remember that A has been assumed to be of full rank.
To this end, we subtract from az its projection onto the plane mentioned above,
ie.,

a3 = (1 - ere] —esej )ag (B.13a)
J_

= Tladl 3||

and so on, until we obtain e,_1, the last unit vector of the orthogonal set, e,,
being obtained as

-1 -eel —eel —---—e,_1eT_))a, (B.14a)

(B.13b)

a

Finally,
~ @
" llagll
In the next stage, we represent all vectors of the set {ay }T in orthogonal coor-
dinates, i.e., in the base O = { e; }}, which are then arranged in an m x n array
A,. By virtue of the form in which the set { e }} was defined, the last m — k
components of vector a; vanish. We thus have, in the said orthonormal basis,

(B.14b)

(257
Q2k

[ak]o = a;ck (B.15a)

Further, we represent b in O as well, thus obtaining

" B
[blo = ﬁf (B.15b)

| B
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Therefore, eq.(B.1), when expressed in O, becomes

(11 a2 a1y ) B )
0 Qo9 [0 57) ﬂ2
. . . Z1 :
: : : oo :
0 0 0 Bnt1
: : : Tn :

Lo o 0 3, |

whence x can be computed by back-substitution. It is apparent, then, that the
last m — n equations of the foregoing system are incompatible: their left-hand
sides are zero, while their right-hand sides are not necessarily so. What the
right-hand sides of these equations represent, then, is the approximation error
in orthogonal coordinates. The error Euclidean norm is, then,

leoll = 4/Boys + -+ B2 (B.17)

The second method discussed here is based on the application of a chain of n
reflections { Hy, }7, known as Householder reflections, to both sides of eq.(B.1).
The purpose of these reflections is, again, to obtain a representation of matrix A

in upper-triangular form (Golub and Van Loan, 1989). The algorithm proceeds

as follows: We assume that we have applied reflections Hy, Hy, ..., Hi_y, in
this order, to A that have rendered it in upper-trapezoidal form, i.e.,
A-i—-l = Hi—l .. .HzHlA
[al1 aly ai i1 ai; ajp |
* * % *
0 a3 ag,i-1 Qy; Ao
* * *
0 0 ag ;1 as; a3y
=4 o . L (B.18)
0 0 - @iy Gy, Gi_1n
* *
(UN 0 ai; a;i,
* *
_0 0 e 0 am’i e Aron

The next Householder reflection, H;, is determined so as to render the last m—i
components of the ith column of H;A;_1 equal to zero, while leaving its first
i — 1 columns unchanged. We do this by setting

s = sgn(at) Jlat)? T @ipn + -+ (g
w=[0 0 il

0 ai+oi aiyy; - ap;
T
u;u’
H,=1-2"*%
* (g
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where sgn(z) is defined as +1 if z > 0, as —1 if z < 0, and is left undefined
when z = 0. As the reader can readily verify,

1
§“Ui||2 = o (W) = ai(ay; + o) = v

and hence, the denominator appearing in the expression for H; is calculated
with one single addition and one single multiplication. It is noteworthy that
H;, as defined above, is the n x n counterpart of the 3 x 3 pure reflection defined
in eq.(2.5). As a matter of fact, H; reflects vectors in m-dimensional space onto
a hyperplane of unit normal u;/|ju|.

It is important to realize that

(a) « is defined with the sign of a}; because +; is a multiple of the ith compo-
nent of u;, which is, in turn, the sum of a; and o;, thereby guaranteeing
that the absolute value of this sum will always be greater than the abso-
lute value of each of its terms. If this provision were not made, then the
resulting sum could be of a negligibly small absolute value, which would
thus render -y; a very small positive number, thereby introducing unnec-
essarily an inadmissibly large roundoff-error amplification upon dividing
the product w;u? by -;

(b) an arbitrary vector v is transformed by H; with unusually few flops,
namely,

1
Hyv =v - —(Tu)uy
i

Upon application of the n Householder reflections thus defined, the system
at hand becomes

HAx = Hb (B.19)

with H defined as

Similar to that in equation (B.16), the matrix coefficient of x in eq.(B.19), i.e.,
HA, is in upper-triangular form. That is, we have

HA = [Og,n], Hb = [bU} (B.21)

with Oy, denoting the (m — n) x n zero matrix, m’ = m —n, and by and by,
being n- and m’-dimensional vectors. The unknown x can thus be calculated
from eq.(B.19) by back-substitution.

Note that the last m' components of the left-hand side of eq.(B.19) are zero,
while the corresponding components of the right-hand side of the same equation
are not necessarily so. This apparent contradiction can be resolved by recalling
that the overdetermined system at hand in general has no solution. The lower
part of b, by, is then nothing but an m'-dimensional array containing the
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nonzero components of the approximation error in the new coordinates. That
is, the least-square error, eg, in these coordinates takes the form

eo = [gz] (B.22a)

Therefore,
lleoll = ||b.L]] (B.22b)

B.2 The Underdetermined Linear Case

In this section we study the solution of system (B.1) under the assumption that
m < n and rank(A) = m. Now, the system under study admits infinitely many
solutions, which allows us to impose one condition on a specific solution that we
may want to obtain. The obvious choice is a minimality condition on a norm of
x. As in the previous section, the minimization of the square of the Euclidean
norm of x leads to a linear problem, and hence, a direct solution of the problem
at hand is possible. We thus have

1
z(x)E§I|x||§ - min (B.23)

subject to the constraint represented by eq.(B.1). Since we now have a con-
strained minimization problem, we proceed to its solution via Lagrange multi-
pliers. That is, we introduce a new objective function {(x), defined as

(x) = 2(x) +AT(Ax~b) — min (B.24)

x,
subject to no constraints, with X defined as an m-dimensional vector of La-
grange multipliers, as yet to be determined. We thus have now an uncon-
strained minimization problem with m + n design variables, the m components
of A and the n components of x, that we group in the (m + n)-dimensional
vector y = [xT AT ]T. The normality condition of the foregoing problem can
now be stated as
d¢

&= Ot (B.25a)
with 0,4, defined as the (m+ n)-dimensional zero vector. The above condition
can be broken down into the two conditions below:

dg
ax = On
dC
= Om

with 0,, and 0,, defined, respectively, as the m- and n-dimensional zero vectors.
The above equations thus lead to

dc _ Ty _
% _ Ax—b=0, (B.27)

dA
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Upon elimination of A from the above system of equations, we obtain
x=AT(AAT) 'b (B.28)

which is the minimum-norm solution of the proposed problem. Again, the for-
mula yielding the foregoing solution is deceptively simple. If we attempt the
calculation of the inverse occurring in it, we risk introducing unnecessarily an in~
admissibly ill-conditioned matrix, the product AAT. Therefore, an alternative
approach to the straightforward implementation of the above formula should be
attempted, as we do in the subsection below.

B.2.1 The Numerical Solution of an Underdetermined
System of Linear Equations

The simplest way of solving this problem is by introducing the m x m identity
matrix 1, in a disguised manner, between the two factors of the left-hand side
of eq.(B.1). To this end, we assume that we have an orthogonal m X m matrix
H, so that

H'H=1 (B.29)

equation (B.1) thus becoming
AHTHx =b (B.30a)
which can be rewritten in the form
AHTv =0 (B.30b)

with v defined, obviously, as
v =Hx (B.30c)

Now, H is chosen as the product of m Householder reflections that transforms
AT into upper-triangular form, i.e., so that

HAT = [Ogm] (B.31)

with Oy, defined as the n' x m zero matrix and n’ = n — m. Moreover, U is
upper-triangular. Further, let us partition v in the form

v= ["U] (B.32)

VL

Upon substitution of eqs.(B.31) and (B.32) into eq.(B.30b), we obtain
T Yu | _
(v Om"'][vL} =b

where Oy, is the m x n' zero matrix. Hence,

UTvy +Opnv =b (B.33)
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whence it is apparent that v can attain any value. Now, since v is the image of
x under an orthogonal transformation, the Euclidean norms of these two vectors
are identical, and hence,

lixl? = lvoll® + vz ® (B.34)

Therefore, if we want to minimize the Euclidean norm of x, the obvious choice
of vy, is zero. Furthermore, from eq.(B.33),

vy =U"Tb (B.35)
and so,

(B.36)

-7
x=HTv=HT [U b]

0,

with 0,y denoting the n'-dimensional zero vector, thereby completing the nu-
merical solution of the problem at hand.

B.3 Nonlinear-Equation Solving: The Determined
Case
Definition B.3.1 A system of algebraic equations containing some that are

not linear is termed nonlinear. If the number of equations is identical to the
number of unknowns, the system is determined.

Example: Find the intersection of the circle and the hyperbola depicted in
Fig. B.1.

Figure B.1: Intersection of a circle and a hyperbola
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Solution: The equations of the circle and the hyperbola are

Hzy) =2 +y°—4=0
fole,y) =2 -y —1=0
The solution to a nonlinear system of equations, when one exists at all, is usually

maultiple: The circle and the hyperbola of Fig. B.1 intersect at four points {P;}1,
of coordinates (z;,y;), as displayed in Table B.1. The problem may have no

P; xi Yi

1 5/2 3/2
2 572 | —/3/2
3| -vB2| V3P
4| =52 | —/3/2

Table B.1: The four intersection points of the circle and the hyperbola of Fig. B.1

real solution, e.g., the circle and the hyperbola of Fig. B.2 do not intersect.
The system of equations from which the coordinates of the intersection points
are to be computed is given below:

filz,y) =2 +y>—-1=0
folz,y) =2 —y* —16=0

This system of equations admits no real solution!
In general, a determined nonlinear system of equations takes the form

f(x)=0 (B.37)
where x and f are both n-dimensional vectors:
1 fi(z1, 22, ..., 24)
x= z:2 , = frtar, $2: o0 ) (B.38)
.'lt'n fn(z1, 1’2., ey X))

B.3.1 The Newton-Raphson Method

We outline below the method of solution of determined nonlinear systems using
the Newton-Raphson method. This is an iterative method, whereby a sequence
of approximations is obtained that, if converging, approaches the solution in a
finite number of iterations within a prescribed tolerance.
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Yy

Figure B.2: A circle and a hyperbola that do not intersect

A value x° of x is given as an initial guess:

T
XOE[pl P2 ... pn]

and f is evaluated at x%:

0 = f(x°)

If the value x° was chosen randomly, most likely it will not verify the given
system of equations, i.e.,

2 £0,

Next, we look for a “small” increment Ax of x (the increment is small if its
norm—any norm—is small):

Ax ={Az; Azy ... Amn]T

Now, f(x? + Ax) is evaluated up to its linear approximation (all quadratic and
higher-order terms are dropped from its series expansion):

of
£f(x° + Ax) = £(x%) + &'Ixzxo

Ax (B.39)
The Jacobian matriz of £ with respect to x is defined as the matrix of partial
derivatives of the components of f with respect to all the components of x:

8f1/0z1 Bf1/Bz2 --- O8f1/0z,
of | 0f2/0z1 Of2/0x2 --- Of2/0zn
= . . . .

(B.40)

Ofn)0ny Ofa)Oms -or Ofn)On
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In the next step, we find Ax that renders zero the linear approximation of
f(xo + Ax):
fo + F(x°)Ax =0

or
F(x%)Ax = —f° (B.41)
whence Ax can be found using, for example, Gaussian elimination:
Ax = -F;'f%, Fy=F) (B.42)
Next, x is updated:
x ¢+ X +Ax (B.43)

the procedure stopping when
|Ax]| < e, (B.44)

for a prescribed tolerance e;.

Remarks:

e Use the maximum norm to test convergence in eq.(B.44), for it costs vir-
tually nothing;

e no guarantee that the Newton-Raphson method will converge at all;

e whether the Newton-Raphson method converges is dependent upon the
initial guess, x°;

e the boundary between regions of convergence and divergence is a fractal
(Mandelbrot, 1983; Gleick, 1988);

e when the Newton-Raphson method converges, it does so quadraticolly: At
every iteration, two decimal places of accuracy are gained (Dahlquist and
Bjorck, 1974).

B.4 Overdetermined Nonlinear Systems of Equa-
tions

A system of nonlinear equations of the form
f(x)=0 (B.45)

where x is a n-dimensional vector and f is a ¢-dimensional vector, is overdeter-
mined if ¢ > n. Just as in the linear case, in general, no vector x can be found
that verifies all the ¢ scalar equations of the system. However, approximations
can be found that minimize the least-square error of the approximation, as de-
scribed in the balance of this Section. The method of solution adopted here is
the overdetermined counterpart of the Newton-Raphson method.
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B.4.1 The Newton-Gauss Method

Problem: Find an approzimate solution to system (B.45) that verifies those
equations with the least-square error:

F(x):%fTWf — min (B.46)

where W is a ¢ x ¢ positive-definite weighting matriz.
Solution: We follow a procedure similar to Newton-Raphson’s, which is known
as the Newton-Gauss method, as described below:

First, an initial guess x° of x is given; then, we produce the sequence

x!, %%, ..., (B.47)

such that
xt = xF 4 AxF (B.48)

Calculation of Ax*:
o Factor W into its two Cholesky factors:
w=VTv (B.49)
which is possible because W is assumed positive-definite.

e Compute Ax* as the least-square solution of the unconstrained overdeter-
mined linear system

VF(x*)AxF = —V(AxF) (B.50)
with F(x) defined as the ¢ xn Jacobian matrix of the vector function f(x),
ie.,
of (x)
F(x) = B.
(x) o (B.51)

Dropping superscripts for the sake of notation-simplicity and recalling
egs.(B.7) and (B.8),

Ax = —(FTWF)"'FTWf (B.52)

This procedure is iterative, stopping when a convergence criterion, dis-
cussed in Subsection B.4.2, is met.

B.4.2 Convergence Criterion
Calculate first VF(x):

_O0F [(of\T oF
of . OF _
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Hence, the condition for a stationary point is
FTwf=0 (B.55)

which is the normality condition of Problem (B.46).

Tt is thus apparent that, at a stationary point of F, f(x) need not vanish;
however, f(x) must lie in the nullspace of FTW. Moreover, from eqs.(B.52)
and (B.55) follows that, at a stationary point, Ax vanishes. Hence, the conver-
gence criterion is

|Ax|| < e (B.56)

where € is a prescribed tolerance.

Remarks:

e The normality condition (B.55) alone does not guarantee a minimum, but
only a stationary point.

e However, as it turns out, if the procedure converges, then it does so, to
a second-order approximation, to a minimum, and neither to a maximum
nor a to saddle point, as we prove below.

The sequence F(x°), F(x!), ..., F(x*), F(x¥*1), ..., obtained from the se-
quence of x values, evolves, to a first order, as AF(x), given by
aF\ "
AF={—) A B.57
(%) ax (®.57)
ie.,
AF = fTWFAx (B.58)
Upon plugging expression (B.52) of Ax into eq. (B.58), we obtain
Af = —ftTWFEFTWF) 'FTWf = —fTMf (B.59)
M

where, apparently, M is a ¢xq positive-definite matrix. As a consequence, fTMf
becomes a positive-definite quadratic expression of f; hence, AF is negative
definite. Thus, the second-order approximation of F(x) is negative-definite,
and hence, the sequence of F' values decreases monotonically. That is, in the
neighbourhood of a stationary point the first-order approximation of £(x) is good
enough, and hence, if the procedure converges, it does so to a minimum.

The reader may wonder whether the Newton-Raphson method can be used to
solve nonlinear least-square problems. Although the answer is yes, the Newton-
Raphson method is not advisible in this case, as made apparent below.

Recall VF from eqs.(B.46) and (B.47):

VF(x) = g—’: = FT(X)\VYJ @

nxg 9%9 g_dim
VFE(x) =0 = FT(x)Wf(x) =0 (NC)
—_— ———

= (x)eR"
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thereby obtaining a determined system of n equations in n unknowns. This
system can be solved using Newton-Raphson method which requires Vi (x):

_W_ 9

Vi (x) ox Ox

[F7(x) Wi(x)]
N
(8F/6x)T
That is, Vap(x) involves second-order derivatives of 4 with respect to x:

% f;

yi=1,...
0z;0z;

L

In summary, the Newton-Raphson method is too cumbersome and prone to
ill-conditioning, for it is based on the normality conditions of the problem at
hand.
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ABB-IRB 1000 robot, 164, 229
acatastatic systems, 471
acceleration analysis
of parallel manipulators, 403
of rigid bodies, 110
of serial manipulators, 186
affine transformation, 29, 62
Agile Eye, 12
Al see artificial intelligence
algorithm definition, 24
angle of rotation, 38
angular acceleration
computation, 331
invariant-rate relations, 110
matrix, 110
vector, 110
angular velocity
dyad, 121, 259
invariant-rate relations, 108, 508—
511
matrix, 102
vector, 102
Appendix A, 507
Appendix B, 513
arc-welding, 430
operation, 444
path-tracking, 459
architecture of a
kinematic chain, 131
manipulator, 129
articulated-body method, 290
artificial intelligence, 4, 24
axial component of a vector, 31
axial vector of a 3 x 3 matrix, 42

base frame, 139
basis of a vector space, 31

Bezout’s method, 400
bivariate-equation approach, 345, 357,
367

C, 25
C++, 25
Canadarm, see Canadarm?2
Canadarm2, 5, 6
canonical form of a rotation, 41
Carausius morosus, 17, 534
Cartesian coordinates
of a manipulator, 129
also, see Cartesian variables
Cartesian decomposition, 42
Cartesian variables
of a manipulator, 138
caster wheel, 417, 485
catastatic system, 471
Cayley’s Theorem, 81
Cayley-Hamilton theorem, 36
change of basis, 65
characteristic equation, 33, 36
of a manipulator, 145, 367
characteristic length, 206, 211, 216
characteristic polynomial, 33
of a manipulator, 184, 344, 364,
367, 390, 401
Chasles’ Theorem, see Mozzi-Chasles’
Theorem
Chebyshev norm, 206, 459
Cholesky-decomposition algorithm,
290, 309
closure equations, 139
compatibility conditions
for acceleration, 332
for velocity, 326
composite rigid-body method, 290
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composition of reflections and
rotations, 54
condition number, 205, 369
configuration of a manipulator, 129
constraint wrenches, 167
continuous path, 234, 345
operations, 429
tracking, 454
control vector, 280, 310
coordinate transformation, 56-65
Coriolis
acceleration, 113
and centrifugal forces, 283, 284,
290
Couette flow, 314
Coulomb
dissipation function, 315
friction, 261, 315
CP, see continuous path
cross-product matrix, 36
curvature, 431
derivative w. r. t.
a parameter, 438
derivative w. r. t. the arc length,
431
parametric representation, 436
time-derivative, 433
cycloidal motion, 243

Darboux vector, 433
time-derivative, 434
decoupled manipulators, 133, 138
decoupled robots, 129
Delta Robot, 14
Delta robot, 14
delta-array (A-array), 427, 493
Denavit-Hartenberg
frames, 131
notation, 129
parameters, 133, 134
rotation matrix, 134
vector joining two frame origins,
135
determined system, 521
dexterity, 24

INDEX

measures, see kinetostatic per-

formance indices
DEXTRE, 5

dextrous hands, see multifingered hands

dextrous manipulation, 10
dextrous workspace, 201
DH, see Denavit-Hartenberg
dialytic elimination, 185, 230
DIESTRO
inverse kinematics, 379
Jacobian, 227
manipulator, 217, 379
differentiation with respect to
vectors, 36, 37
direct kinematic problem
of parallel manipulators, 388
displacement equations of a
manipulator, 139
dissipation function, 261, 314
duality, 167
dynamic systems, 1
dynamics
of holonomic systems, 470
of multibody systems, 259
of parallel manipulators, 474
of rigid bodies, 118
of robotic mechanical systems,
470
of rolling robots, 484
of serial manipulators, 257

EE, see end-effector
elastodynamic, 168
end-effector, 131
Euclidean norm, 38
Euler
angles, 42, 81, 87
equation (for graphs), 474
equation (in mechanics), 120
parameters, see Euler-Rodrigues
parameters
Euler’s
formula for graphs, see Euler
equation for graphs
theorem, 36
Euler-Lagrange equations, 258, 260
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derived with the NOC, 282, 472
Euler-Rodrigues parameters, 51

Fanuc Arc Mate
inverse displacement, 375
Fanuc Arc Mate 120iB, 165
Fanuc Robot Arc Mate
characteristic length, 226
DH parameters, 225
KCI, 226
feasible twists, 167
First Law of Thermodynamics, 191
flight simulator, 389
floating-point operation, 24, 189, 289,
515
flop, see floating-point operation
forward dynamics
algorithm complexity, 306
of serial manipulators, 257, 289
fractal, 524
Frenet, see Frenet-Serret
Frenet-Serret
formulas, 431
frame, 430
vectors, 431
friction forces, 313
Frobenius norm, 204
fuzzy logic, 24

genealogy of robotic mechanical sys-
tems, 1, 4
general architecture of a
manipulator, 4
generalized coordinates, 260, 261, 470
generalized forces, 260, 261, 490
generalized inertia matrix, 262, 498
Cholesky decomposition, 291
factoring, 291
time-rate of change, 298
generalized speeds, 261, 471
Ginger, see Segway
gluing operation, 439
grasping matrix, 410

gravity
terms, 312
wrench, 281

545

hand-eye calibration, 76
Hexa robot, 15

higher kinematic pair, 130
holonomic systems, 469, 470
homogeneous coordinates, 56
homotopy, 345

IDP, see inverse displacement prob-
lem
ilonators, 20
inertia tensor, 118
inertia dyad, 120, 259
input, 1, 280
instant screw axis, 104
instrument calibration, 75
intelligent machines, 2, 24
intelligent robots, 2
invariance, 71
inverse displacement problem of
a general 6R manipulator, 344
inverse dynamics
of serial manipulators, 257
recursive, 269
inverse kinematics problem of
parallel manipulators, 390
inverse vs. forward dynamics, 257
inward recursions, 275, 278
ISA, see instant screw axis
isomorphism, 33
isotropic
manipulator, 206
matrix, 203, 206
isotropy, 209
iteration, 24, 458

Jacobian matrix, 167
condition number, 205
evaluation, 175
invertibility, 201
transfer formula, 173

joint, 130
coordinates, 129, 133
parameters, 133
variables, 133

Kane’s equations, 268



546

KCI, see kinematic conditioning in-
dex
kernel of a linear transformation, 29
Kinemate, 108
kinematic
chain, 129
conditioning index, 204
constraints, 281
constraints for serial manipula-
tors, 285
pair, 130
kinematic chain
architecture of a , 131
kinetostatic performance indices, 201
kinetostatics, 167

least-square error, 525
least-square solution, 525
Lee vs. Li, 345
Lee’s manipulator, 376
Lee’s procedure, 373
left hand, 15
legged robots, 17
Li vs. Lee, see Lee vs. Li
Li’s manipulator, see Lee’s manipu-
lator
linear invariants, 42
of rotation, 43
linear transformations, 28
local structure of a manipulator, 133
locomotors, 17
lower kinematic pair, 130
LU decomposition, 171

machine (definitions of), 24
main gauche, see left hand
maneuverability, 426
manipulability, 201

of decoupled manipulators, 231
manipulator

angular velocity matrix, 261

architecture, 129

configuration, 129

dynamics, 257, 474

general architecture, 4

mass matrix, 261

INDEX

posture, 129

twist, 261

wrench, 261
manipulators, 7, 129
matrix

norm, 204

representation, 32
mechanical system, 2
mechatronics, 24
Mekanum wheels, 20
minimum-time trajectory, 283
mobile wheeled pendulums, 21
module, 35
moment of inertia, 118
moment invariants, 71
moment of a line

about a point, 96

about another line, 122
momentum screw, 121
motor, 108
Mozzi-Chasles’ Theorem, 91
MSS, 5
multibody system

dynamics, 259

Euler-Lagrange equations, 268
multicubic expression, 141
multifingered hands, 10
multilinear expression, 140
multiquadratic expression, 141
multiquartic expression, 141

natural orthogonal complement, 259
applied to holonomic systems,
472
applied to parallel manipulators,
474
applied to planar manipulators,
293
applied to rolling robots, 485,
496
Newton
-Euler algorithm, 278
-Gauss method, 455
-Raphson method, 77
equation, 120
methods, 345, 455
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NOC, see natural orthogonal com-
plement
nonholonomic systems, 258, 469, 484
noninertial base link, 288
nonlinear system, 521
norm
also, see Frobenius norm
norm (matrix -), 204
normal component of a vector, 31
normality condition, 526
nullspace of a linear transformation,
29
numerical conditioning, 357, 369

object-oriented programming, 25
Odetics series of hexapods, 17
ODW, see omnidirectional wheels,
see omnidirectional wheels
off-line, 4, 145, 176
omnidirectional wheels, 20, 493
dynamics, 493
kinematics, 422
on-line, 24
operation point, 133
orientation problem, 157
orthogonal complement, 282
orthogonal decomposition of a vec-
tor, 31
orthogonal decoupled manipulator,
152
orthogonal projection, 29
orthogonal RRR manipulator
dynamics, 294, 297
inverse kinematics, 153, 155
recursive dynamics, 304
workspace, 159
OSU ASV, 17
OSU Hexapod, 17
output, 1
outward recursions, 269
overdetermined system, 524

Pappus-Guldinus theorem, 231

parallel axes, theorem, 120

parallel manipulators
acceleration analysis, 401
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dynamics, 474
kinematics, 388
velocity analysis, 401
parallel robots, 12
parametric
path representation, 435
representation of curvature, 436
representation of curvature deriva-
tive, 438
representation of torsion, 436
representation of torsion deriva-
tive, 438
splines, 449
path-tracking for arc-welding, 459
pick-and-place operations, 233, 234
Pliicker coordinates
of a line, 95
transfer formula, 98
planar manipulators, 192
acceleration analysis, 198
displacement analysis, 193
dynamics, 263
static analysis, 199
velocity analysis, 195
platform manipulators, 389, 398, 474
polar-decomposition theorem, 202
polynomial interpolation
with 3-4-5 polynomial, 236
with 4-5-6-7 polynomial, 240
pose
array, 99
of a rigid body, 98
positioning problem, 142
posture of a manipulator, 129
PPO, see pick-and-place operations
Principle of Virtual Work, 191
prismatic pair, 130, 179
programmable robot, 2
projection, 29
theorem, 515
Puma robot, 132, 133, 150
DH parameters, 133
inverse kinematics, 142
workspace, 151
pure reflection, 30
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quaternions, 53

Raghavan and Roth’s procedure, 345

Raghavan-Roth’s procedure, 357

range of a linear transformation, 29,
79

Rayleigh dissipation function, see dis-

sipation function
real-time, 24, 257
reciprocal bases, 76, 175, 483
reciprocal product, 117
recursion, 24
redundant sensing, 75
References, 528
reflection, 30, 346, 352
composition with rotations, 54
regional structure of a manipulator,
133
revolute pair, 130
rheonomic systems, 470
robot design, 168
robotic hands, 10
robotic mechanical systems, xiii, 1
Rodrigues, see Euler-Rodrigues
vector, 81
rolling robots
dynamics, 484
kinematics, 416
rotating pair, 130
rotation, 33
rotation matrix, 38
exponential representation, 40
run-time, 24
Runge-Kutta methods, 311
RVS, xiv, 235

SARAH, 11
Schonflies-motion generators, 16
scleronomic systems, 470
screw
amplitude, 93
axis, 93
motion, 89
pitch, 93
Segway, 22
self-inverse, 31

INDEX

serial manipulators
acceleration analysis, 186
dynamics, 257
kinematics, 130
statics, 190
velocity analysis, 168
workspace, 183
service angle, 201
similarity transformations, 65
simple manipulation, 10
simulation, 310
singular-value decomposition, 203
singular-values, 203
singularities, 167
singularity analysis of decoupled ma-
nipulators, 180
sliding pair, 130
SPDM, 5
spherical wrist, 133, 158, 159
workspace, 160
spline(s), 246
interpolation of 4-5-6-7 polyno-
mial, 251
natural, 250
nonparametric, 247, 449
parametric, 449
periodic, 247
square root of a matrix, 52
Star robot, 15
state
of a dynamical system, 280
of parallel manipulators, 480
of serial manipulators, 280, 310
variable, 261, 280, 310
variable equations, 310
vector, 280
static analysis
of rigid bodies, 114
of serial manipulators, 190
static, conservative conditions, 167
stationary point, 526
Steiner, theorem, 120
Stewart platform, see Stewart-Gough
platform
Stewart-Gough platform, xix, 390
direct kinematics, 388
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leg kinematics, 390
structural design, 168
structure of mechanical systems, 9
structured environment, 3
Sutherland, Sprout & Assocs. Hexa-

pod, 17

Swedish wheels, 20
system, 1

telemanipulators, 5
tensors, 27, 279, 280
Titan series of quadrupeds, 17
torsion, 431
derivative w. 1. t.
a parameter, 438
derivative w. r. t. the arc length,
431
parametric representation, 436
time-derivative, 433
trace of a square matrix, 42
trajectories with via poses, 245
trajectory planning, 233, 429
truncation error, 311
Trussarm, 15
TU Munich Hand, 11
TU Munich Hexapod, 17
twist, 104
axis coordinates, 108
of a rigid body, 107
ray coordinates, 108
transfer formula, 109
twist-shape relations, 282
for serial manipulators, 285

unimodular group (of matrices), 97
unstructured environment, 3

vector of a 3 x 3 matrix, 42

vector space, 28

velocity analysis
of parallel manipulators, 401
of rolling robots, 418
of serial manipulators, 168

via poses, 245

virtual work, see Principle of Vir-

tual Work
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viscosity coefficient, 314
viscous forces, 313

walking machines
kinematics, 413
leg architecture, 413-415
walking stick, 17
weighting matrix, 525
wheeled robots, 19
workspace of positioning manipula-
tors, 182
wrench
acting on a rigid body, 115
axis, 115
pitch, 115
transfer formula, 117
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