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T
he use of robots to automate some tasks
involving sensors and motion planning
strategies has not been widespread because
they are difficult to program. Therefore, there
is a pressing need for systems that allow users to

easily specify a high-level description of the task (i.e., what
is to be done) and that automatically program the robot
motions using this description (i.e., how it will be done). 

Automatic polishing systems require the generation of colli-
sion-free trajectories and the use of compliant control. Most
approaches have addressed this problem for robots that polish fixed parts.
Nagata and Watanabe [1] propose a joystick-controlled teaching system that allows a polishing robot with
an impedance control mode to perform polishing tasks on an object of an unknown shape. Active force
control is also used by Wang and Wang [2]; they propose an automated finishing system for polishing a
free-form surface using an active force controller mounted on the wrist of an industrial robot equipped
with a grinding tool. The system includes a path planning module to plan zigzag and fractal paths on
curved surfaces [3]. The control problem is also tackled by Nagata et al. [4]. They present a learning-based
surface-following controller, which is based on the original trajectory originated by the cutter location
data and an adaptive behavior.

The planning of collision-free paths in cluttered environments is tackled by Takeuchi et al. [5], [6],
who developed an automatic programming system for a robot equipped with a polishing tool. This sys-
tem allows the generation of collision-free paths for the polishing of workpieces that have complicated
shapes. An automatic teaching system is proposed in [7] for a three-axis machining center and a two
degrees of freedom (DOF) robot. The system is driven by a user-friendly program based on computer-
aided-manufacturing (CAM) software to generate 5-DOF numerical control (NC) data. The program also
includes a graphic simulator and a teaching mode. The system is expanded in [8] with a monitoring pro-
gram that allows the operation of the polishing robot from a remote site.

The user interface for the teaching of polishing tasks is further discussed by Balijepalli and Kesavadas [9].
They propose a haptic-based virtual training tool. Finally, Tsai et al. [10] present a complete automatic
mold polishing system, which includes a process planner that schedules a sequence of polishing sequences
based on the analysis of the manual operation of the polishing procedure; a path planner that computes a

BY LUIS BASAÑEZ AND JAN ROSELL

Robotic Polishing
Systems

© 1996, 1997 DIGITAL STOCK

Robotic Polishing
Systems
From Graphical Task Specification 
to Automatic Programming



IEEE Robotics & Automation Magazine SEPTEMBER 200536

path based on the mold curvature and the tool grain size; and
a user interface for the specification of the input data and for
monitoring by the user during process execution.

This article addresses the automatic programming of robot-
ic polishing tasks from a graphical high-level description of
these tasks. Polishing tasks of small parts, which are held by
the robot gripper, are considered, and compliance is assumed
for the polishing station. 

This article presents a formal analysis of the problem and
the proposed solution, which is divided into two parts: the
task specification module and the task planning module. The
task specification module is a graphical user interface (GUI)
that allows the user to easily specify the polishing curves over
a computer-aided-design (CAD) model of the part. The task
planning module finds the time-optimum sequence of colli-
sion-free trajectories to execute the task. 

Overview

Problem Statement
Let us define the following terms: 

◆ polishing curve: the curve over the surface of a part to be
polished, representing a strip that must be polished
continuously. It is described by an ordered set of refer-
ence frames over the surface of the part to be polished.
The z-axis of each reference frame is normal to the
surface, and the x-axis points to the origin of the next
reference frame. 

◆ polishing station: the set of locations over a polishing
band that allows the same surface finishing. Each loca-
tion is described by a reference frame. 

◆ trajectory: the set of ordered robot configurations (a con-
figuration being defined by the robot joint variables). It

can be either a polishing trajectory, which allows carry-
ing out a polishing curve at a given polishing location, or
a linking trajectory, which allows the robot to connect
two polishing trajectories through a collision-free path. 

◆ polishing motion sequence: the sequence of trajectories that
allows carrying out all the polishing curves of a part in a
minimum amount of time. 

The aim of the project is to automatically synthesize the
polishing motion sequence from a user-defined graphical
description of the polishing curves over a CAD model of the
part to be polished. To achieve this objective, three topics
must be tackled. 

◆ Task specification is the determination, in a user-friendly
manner, of the polishing curves over the CAD model
of the part.

◆ Optimization is the process of determining the best, in
terms of time, feasible sequence of polishing trajectories
for a given sequence of polishing curves, taking into
account that different trajectories can be used to follow
each of the polishing curves. This is due to several rea-
sons, such as the different locations of the selected pol-
ishing station, the different solutions of the inverse
kinematics, and the two senses in which many curves
can be carried out. 

◆ Path planning is finding collision-free linking trajecto-
ries through the polishing cell.

Proposed Approach
The proposed system is composed of a task specification mod-
ule and a task planning module.

The task specification module is a GUI that copes with
the specification problem. The input file is a CAD model
of the part to be polished represented by a triangular mesh.
The output of this module is an ASCII file including infor-
mation about the curves and the grasps. 

◆ Each polishing curve is described by the following
parameters: 

◆ sequence of reference frames
◆ allowed execution senses
◆ execution speed
◆ type of surface finishing
◆ width of the polishing band
◆ force specification in the z-direction of each ref-

erence frame.
◆ Each grasp is described by a homogeneous transforma-

tion relating the reference frame of the part to the refer-
ence frame at the wrist of the robot. 

The task planning module copes with the optimization
and path planning aspects. The input files to this module are 

◆ the polishing cell given by a VRML file with the
geometry of a set of convex solids representing the
objects in the cell (Figure 1)

◆ the set of polishing stations given by the corresponding
reference frames

◆ the polishing curves over the CAD model of the part
resulting from the task specification module.Figure 1. The polishing cell model.

Automatic polishing systems require
the generation of collision-free
trajectories and the use of
compliant control. 
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The output files of the task planning module are
◆ the execution file, a program that allows the execution

of the task by the robot. The program (in the present
case a V+ program for a Stäubli RX-90 robot) is a
sequence of motions between robot configurations,
defined as joint-space motions for linking trajectories
and as Cartesian-space motions for polishing trajecto-
ries. The program also includes the force set points that
will be sent to the active compliance control of the pol-
ishing station. 

◆ the simulation file, a VRML file which contains the
robot motions for the simulation of the task. 

Task Specification Module
The task specification module was introduced in [11]. The
GUI built to implement this module is called the polishing
curves generator (PCG). It is intended to be a user-friendly tool
to specify the polishing curves over a CAD model of the part
and can be used by an operator with little computer knowl-
edge. It works using Microsoft Windows and it is pro-
grammed in C using the openGL graphics library: 

Main Features

Visualization
The model of the part to be polished is a triangular mesh,
specified as an input VRML file. The part can be visualized as
a solid or wired model and can easily be rotated in any direc-
tion (Figure 2). 

Specification of the Curve’s Parameters.
Before entering the points of a curve, a dialog box appears for
selecting the following curve parameters (Figure 3): 

◆ type of surface finishing: an identifier of the type of surface
finishing

◆ velocity: the linear velocity of the part at the contact
point; for a given pressure, an increase in the velocity
results in a decrease in material removal 

◆ pressure: the force to be exerted by the polishing band at
the contact point 

◆ width: the width of the polishing band. 
The parameters of any existing curve can also be modi-

fied from the menu.

Specification of the Curve’s Geometry
The points of a curve are selected by positioning the mouse
over the CAD model of the part. 

A curve is specified as a series of piecewise rectilinear sub-
curves, each one connecting two consecutive points intro-
duced by the user. Except for the first and last segments of a
subcurve, each segment connects the middle point of two
edges of a triangle, ensuring that the subcurve is always over
the surface of the object.

When the user enters the two points of a subcurve, the
Dijkstra algorithm [13] searches for the minimum sequence of
triangles that connect the triangles containing these two

points. If several minimum sequences exist, the corresponding
shortest subcurve is selected.

The current subcurve (i.e., the one the user just defined) is
interactively computed as the user drags its end point to the
desired final position. The edit menu allows the modification
(e.g., changing the last point) or deletion of the current sub-
curve of any curve. Figure 4 shows a curve composed of two
subcurves; the current subcurve is shown in yellow. 

Smoothing of the Curves
A smoothing algorithm is applied to each subcurve by mov-
ing the segment end points over the edges (Figure 5). Let P
be one of these points over a given edge e , and let v and w
be the unitary vectors on the subcurve with origin at P.

Figure 3. The specification of polishing curves parameters.

Figure 2. The GUI.
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Then P is moved along e in the sense specified by the pro-
jection of v + w on e an amount (|v| + |w|)/2. The proce-
dure is iteratively applied until its convergence. Figure 6
shows the smoothing of the previously defined polishing
curves of Figure 4. 

Polishing Strip
The strip f polished by a given band depends on the part
material and the specified force and velocity, and it is limited
by the width a of the band (Figure 7). The strip is visualized
over the part as the user specifies the geometry of the curve

and allows the definition of the minimum number of curves
to cover the entire part surface (Figure 8). Figure 9 shows the
strips polished for two polishing curves, which are defined to
be polished at different pressures. 

An Example
There are different types of pieces that need a polishing
process. Among them, bath taps and door knobs are usually
found in robotized polishing workshops. Figure 10 shows the
polishing curves defined over a door knob. There are 11 pol-
ishing curves with a total of 825 points completely covering
the knob surface. The curves have been defined in less than 5
min by a trained user.

Task Planning Module
The task planning module was introduced in [12]. The
module synthesizes the robot program in two steps. First,
polishing trajectories for each polishing curve are obtained.
This is accomplished by considering the polishing locations
of the polishing stations that are consistent with the type of
surface finishing described for each polishing curve and

Figure 5. The curve smoothing procedure.

Figure 4. The specification of polishing curves geometry. Figure 6. The curve smoothing results.

Figure 7. Polishing strips generation.
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friendly tool for specifying the
polishing curves.
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applying the robot inverse kinematics. For each trajectory,
the robot’s collision-free condition is verified by checking a
sample set of its configurations. Then the optimization
problem is solved for the obtained polishing trajectories.
Second, the obstacle avoidance is tackled for the linking tra-
jector ies. The submodules to perform these steps are
described in the following subsections.

Sequence Optimization Submodule
The optimization submodule finds the best feasible sequence
of polishing trajectories. It initially considers that a linking
trajectory is a linear path in joint space connecting the last and
the first configurations of two consecutive polishing trajecto-
ries; i.e., it does not take into account possible collisions.

The problem of searching the optimum sequence of trajecto-
ries can be represented as the problem of searching the path of
minimum cost through an oriented graph (Figure 11), where: 

◆ each node represents a feasible trajectory to perform a
polishing curve (the nodes are grouped in columns rep-
resenting the same polishing curve); and the nodes ni

and n f represent, respectively, the initial and the final
configurations

◆ each arc represents a linking trajectory. 
The cost of a trajectory is given by the time needed for the

execution of the corresponding motions. It is computed as
follows. Let i be the angular motion of joint i for a given
linking trajectory and vmax

i its maximum angular velocity. The
minimum time to perform the motion of joint i is
ti = i/vmax

i . Then, the cost C of a trajectory is

C = ti| ti ≥ t j∀ i, j.

If a linking trajectory involves a regrasping operation, its
cost is set to a very high value. 

The cost of an arc of the graph is the sum of the cost of
the linking trajectory it represents and the cost of the previous
polishing trajectory, i.e., the one represented by the initial
node of the arc.

The topology of the graph allows the use of the Bellman
algorithm [14] in order to find the sequence of trajectories
with minimum cost. 

Due to the presence of obstacles, the path planning
submodule later could modify a linking trajectory, lead-
ing to a considerable increase in the cost. In this case, all
the linking trajectories connecting the same two polish-
ing curves should be, probably, also modified. The costs
of the modified linking trajectories replace the initial
ones in the graph, and the optimization procedure is
executed again.

Path Planning Submodule
The path planning submodule uses a collision map based on
an approximate cell decomposition of the configuration space
[15] corresponding to the three first joints of the robot and

using the I-COLLIDE collision detection library [16] and a
modified version of the Fulkerson algorithm [14] for path
searching in graphs. It is built for every polishing cell as
shown in the following algorithm.

Collision-map ()
1. Partition the configuration space 

into a regular grid. 
2. Verify, for the center of each cell, 

if there is any intersection between 
the objects of the environment and the
robot, considering the three last 
joints and the grasped part included 
in a sphere.

Figure 9. Polishing strips: the width is dependent on the pres-
sure specified.

Figure 8. Polishing strips showing the covered part surface.
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3. Mark the cells as free cells if there 
is no intersection and as collision 
cells otherwise. 

4. Expand the collision space by marking 
as collision cells those that neighbor 
any collision cell found in
the previous step. 

5. Build bigger parallelepiped
cells by joining adjacent 
free cells when possible. 

6. Identify free subspaces. 
7. Build a graph for each subspace,

the nodes being the cells of 
the partition and the arcs 
connecting adjacent cells. 

8. Find the paths between any two 
nodes of the graph.

END

As an example, Figure 12 shows a partition of the configu-
ration space with three subspaces. It has been obtained from
an initial grid of 64,000 cells.

The path planning submodule is devoted to find collision-free
paths between the contact configurations corresponding to
the end and to the beginning of two consecutive polishing
trajectories. 

Let c i and c f be two such configurations. Let c ′
i and c ′

f be
two configurations located, respectively, at a given distance d
from c i and c f in the direction of the z-axis of the reference
frame of the corresponding polishing location. The distance d
is defined by the user. 

The path p connecting ci and c f is decomposed into: 
pi : rectilinear path in Cartesian space connecting c i

with ci ′. 
ps : a path connecting ci ′ with c f

′ in joint space.
p f : a rectilinear path in Cartesian space connecting c f

′

with c f .
These paths will be computed by the path planning algo-

rithm, which uses the following three tools:
1. Validation tool: Given a rectilinear path s in joint space, it

verifies if s is collision-free.

Validate (s)
Discretize s into a finite set of 
configurations
FOR each configuration:

Detect any collision between the 
robot(including the grasped part) and 
the objects of the environment
IF a collision is detected RETURN 
nonvalid

END FOR
RETURN valid

END

2. Smoothing tool: Given a trajectory p composed of a set of

Figure 11. A graph representing a sequence of three polishing
curves, which can be performed by two, three, and two pol-
ishing trajectories, respectively.

C0 C1 C2

ni nf

Figure 12. The configuration space partition.

Figure 10. The polishing curves defined over a door knob.
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linear segments, it finds a collision-free smoother trajec-
tory p′.

Smooth (p)
1. Discretize each segment of p into a 

finite set of configurations 
2. Generate a graph with these configura-

tions as nodes, and with the recti-
linear paths connecting any two nodes
as arcs 

3. Apply the Dijkstra algorithm to find 
the shortest path p′ connecting the 
initial and the final nodes 

4. Validate (p′) 
5. IF p′ is not valid, eliminate the seg-

ments of p′ that are not valid and GOTO 3 
6. ELSE RETURN p′

END

3. Search tool: Given two configurations ci ′ and c f
′ it finds a

collision-free path between them. 
Since the collision map is built in a very conservative

way, the two configurations ci ′ and c f
′ will probably not

belong to any free cell. However, it is assumed that a free
path exists connecting them to a free subspace, since the
environment in a polishing cel l  wil l  not be much
cluttered.

Search ( ci ′, c f
′)

1. Find ci ′′,c f
′′, the two free configura-

tions closest to ci ′ and c f
′, respectively

2. Obtain the trajectory p′ between ci ′′ and
c f

′′ using the collision map
3. Obtain the trajectory p by adding to p′

the linear segments ci ′ ci ′′ and c f
′′ c f

′
4. Smooth (p)
5. RETURN p

END

As an example Figure 13 shows the path p searched in
the collision map and the corresponding smoothed path p′.
Finally, the path planning algorithm is as follows:

Path-Planning ( ci ′, c f
′, d)

Find ci ′ and c f
′ as the configurations 

located at a distance d from ci and c f , 
respectively, in the direction of the 
z-axis of the reference frame of the 
corresponding polishing location

pi: rectilinear path in Cartesian 
Space between ci and ci ′

ps: rectilinear path in Joint Space 
between ci ′ and c f

′

pf : rectilinear path in Cartesian 
Space between c f

′ and c f

Validate (ps)
IF ps is not valid THEN ps = Search ( ci ′, c f

′)

RETURN (pi ∪ ps ∪ pf )
END

A Case Study
This section presents the following example: 

◆ The task is performed by a RX-90 Stäubli robot. 
◆ The part to be polished is a semisphere. 
◆ The polishing cell has two polishing stations, each one

with only one polishing location, and one obstacle
(Figure 1).

◆ Joint 6 has a finite range. 
◆ The part can only be grasped in one way. 

Task Specification Phase
Using the PCG, four polishing curves have been defined over
the part (Figure 14). 

◆ The first three, described by ten reference frames, are to
be performed at Polishing Station 1.

◆ The last one is a continuous curve described by 20 refer-
ence frames; it is to be performed at Polishing Station 2. 

◆ All of them can be executed in either sense. 

Figure 14. The polishing curves defined over a semispheric part.

Figure 13. Trajectory p obtained from the collision map
(continuous line) and trajectory p (dashed line) obtained by
applying the smoothing procedure to p.
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Task Planning Phase
Taking into account the inverse kinematics, each of the
four polishing curves defined in the specification phase can
be performed by 12, 8, 8, and 114 polishing trajectories,
respectively.

The program runs in a Silicon Graphics workstation
(175 MHz R10000 Indigo2). The two steps of the program
synthesis follow. 

Optimization Step
The graph is generated in 4.3 s and the optimum polishing
trajectory sequence is found in 0.01 s. 

Path Planning Step
The collision map is generated with

◆ an initial partition of 64,000 cells: 
◆ Joint θ1: Range divided in 40 intervals (each 8◦

over a range of 320◦).
◆ Joint θ2: Range divided in 40 intervals (each 6.88◦

over a range of 275◦)
◆ Joint θ3: Range divided in 40

intervals (each 7.12◦ over a
range of 285◦).

◆ the radius of the sphere covering
the three last joints and the grasped
part equals 400 mm. 

The collision map is obtained in 43.89
s, distributed as follows: 

◆ The collision detection to deter-
mine the free cells is obtained in
40.10 s.

◆ The connectivity test to generate
the subspaces and the grouping
algorithm to form bigger free cells
is performed in 3.33 s. Three sub-
spaces are obtained, composed of
228, 83, and 55 cells respectively.

◆ The modified Fulkerson algorithm
to find the paths connecting any
two cells is performed in 0.44 s,
0.01 s, and 0.01 s, respectively, for
each subspace. 

The modification of the Fulkerson
algorithms allows dealing with rather big
graphs, making the grouping algorithm
not critical. 

The solution path is obtained in 65 s by 
◆ fixing the distance d to 20 mm

◆ using the collision map to find ps , which is found to be
composed of 20 configurations

◆ smoothing with a discretization of 100 points per arc
◆ validating the arcs with a 3◦ step.
The input and output files of this example, including the

simulation, are shown in http://www.ioc.upc.es/usuaris/
JanRosell/.

Conclusions
This article presents a graphical task-level robot programming
tool for polishing parts held by the robot gripper. The pro-
posed approach allows a user-friendly manner to specify the
polishing curves over a CAD model of the part. The user
also specifies the width of the abrasive polishing bands to be
used and the pressure exerted. The GUI aids the user in veri-
fying that the whole surface is to be correctly polished. Once
the task specification is done, a task planning module pro-
vides the algor ithms to guarantee the time-optimum
sequence of robot trajectories to perform the polishing of the
curves over the part, avoiding collisions with the obstacles of
the cell.

The programming tool has been tested in actual polishing
tasks at the industrial company Polits Catalunya using a
Stäubli RX-90 robot (Figure 15). An example of the parts
used for the test is shown in Figure 16. The proposed
approach can be easily extended to other similar tasks like
cutting or material dispensing. 

Figure 15. The RX-90 robot executing a polishing task.
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The optimization submodule finds
the best feasible sequence of
polishing trajectories.
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